Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Jun 18;67(Pt 7):o1653–o1654. doi: 10.1107/S1600536811022306

2,6-Anhydro-1,3-di-O-benzyl-d-mannitol

Edmilson Clarindo de Siqueira a, Bogdan Doboszewski a, James McGarrah b, Alexander Y Nazarenko c,*
PMCID: PMC3152021  PMID: 21837055

Abstract

In the title compound, C20H24O5, the six-membered pyran­ose ring adopts a chair conformation. The dihedral angle between the planes of the phenyl groups of the benzyl substituents is 63.1°. Two types of inter­molecular O—H⋯O hydrogen bonds lead to the formation of infinite chains along the b axis. Only weak C—H⋯O contacts exist between neighboring chains.

Related literature

For syntheses of this and similar compounds, see: Barker (1970); Doboszewski (1997, 2009); Doboszewski & de Siqueria (2010); Hartman (1970a ,b ). For related structures, see: Boeyens et al. (1983); Doboszewski & Nazarenko (2003); Guiry et al. (2008); Hong et al. (2005); Vidra et al. (1982). For conformations of six-membered rings, see: Schwarz (1973); Cremer & Pople (1975); Boeyens & Dobson (1987). For hydrogen bonding in carbohydrate chemistry, see Gilli & Gilli (2009); Desiraju & Steiner (1999); Jeffrey (1997), and references therein.graphic file with name e-67-o1653-scheme1.jpg

Experimental

Crystal data

  • C20H24O5

  • M r = 344.39

  • Monoclinic, Inline graphic

  • a = 5.6584 (10) Å

  • b = 7.9610 (12) Å

  • c = 19.808 (4) Å

  • β = 91.968 (6)°

  • V = 891.8 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 200 K

  • 0.6 × 0.4 × 0.05 mm

Data collection

  • Bruker SMART X2S diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008b ) T min = 0.91, T max = 0.98

  • 8624 measured reflections

  • 1695 independent reflections

  • 1458 reflections with I > 2σ(I)

  • R int = 0.052

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035

  • wR(F 2) = 0.082

  • S = 0.99

  • 1695 reflections

  • 228 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.14 e Å−3

Data collection: GIS (Bruker, 2010); cell refinement: APEX2 (Bruker, 2010) and SAINT (Bruker, 2009); data reduction: SAINT and XPREP in SHELXTL (Sheldrick, 2008a ); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008a ); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008a ); molecular graphics: ORTEP-3 for Windows (Farrugia, 1999) and Mercury (Macrae et al., 2008); software used to prepare material for publication: PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811022306/zl2379sup1.cif

e-67-o1653-sup1.cif (20.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811022306/zl2379Isup2.hkl

e-67-o1653-Isup2.hkl (83.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4⋯O5i 0.84 1.95 2.789 (2) 175
O5—H5⋯O2i 0.84 1.98 2.812 (2) 169
C6—H6B⋯O5ii 0.99 2.54 3.461 (3) 155

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

This study was supported by a grant for the X-ray diffractometer and by SUNY grant No. 1073053. AYN thanks Dr Bruce Noll (Bruker AXS) for useful advice in operating the X2S diffractometer, and Dr David Geiger (SUNY Geneseo) for help with the experiment.

supplementary crystallographic information

Comment

A target compound of our (BD and ECS) synthetic research, 2,5-anhydro-D-glucitol (compound 2 in Fig. 1) is technically a β-C-glycoside of D-arabinofuranose. We prepared it in its protected form 4 starting from 2,3,5-tri-O-benzyl-D-arabinofuranosyl chloride or bromide (Doboszewski, 1997, 2009). The structure of 4 was confirmed by X-ray crystallography (Doboszewski & Nazarenko, 2003). Since this procedure furnished low and variable yields, we focused our attention on an alternative method, i.e. acid-catalyzed dehydration of D-mannitol 1 (Barker, 1970; Hartman, 1970a,b; Doboszewski & de Siqueria, 2010). The original patented procedure (Hartman, 1970a,b) was modified by using vacuum-dry chromatography to isolate the acetonide 4, which was subsequently used to obtain the corresponding di-O-benzyl derivative 8 (Doboszewski, 1997). During the synthesis of 8 at a ca 30 g scale (see Fig. 1) we have noticed the presence of a minor byproduct which is more polar than the expected 8. This compound was formed in a very low yield (ca 1%) and its 1H NMR spectrum was practically intractable and showed an aromatic:aliphatic H atom ratio of 1:1.4. Using single-crystal X-ray diffraction (this present study) it was identified as 2,6-anhydro-1,3-di-O-benzyl-D-mannitol 9. Evidently, the main cyclization route to form 2,5-anhydro-D-glucitol 2 was accompanied by a minor pathway to form 3 together with other dehydration products (Barker, 1970). Both acetonides 4 and 5 migrated jointly during chromatography, but become separable after transformation into the corresponding di-benzyl ethers 8 and 9, respectively (Fig. 1).

The absolute structure of the title compound is known from the synthetic route which does not affect stereogenic atoms of the starting D-mannitol. In the crystal structure of title compound (Fig. 2), all bond lengths and bond angles have standard dimensions. The high flexibility of the oxymethylene fragment results in elongated thermal ellipsoids of atoms O1 and C10.

The six-membered phenyl rings are flat within 0.01 Å. Fig. 3 shows that the pyranose ring adopts a chair conformation (Schwarz, 1973) with atoms C1, C2, C5, and C6 being within 0.01 Å from their mean plane, and atoms O1 and C4 at a distances of 0.68 and 0.64 Å. A quantitative analysis of the ring conformations was performed using the method of Cremer and Pople (Cremer & Pople, 1975; Boeyens & Dobson, 1987) for the calculation of parameters of puckering. The polar parameters for the pyranose ring are Q = 0.576 (2) Å, Θ = 175.8 (2)°, and Φ = 207 (3)°. These suggest a chair conformation (ideal Θ = 0 or 180°) only slightly distorted towards half-chair (Θ = 130°, Φ = 210°). There are four compounds reported in Cambridge Structure Database with the same motif: 1,5-anhydro-DL-galactitol (refcode ANGALA10, Vidra et al., 1982) 1,5-anhydro-D-glucitol (CELTUI, Boeyens et al., 1983), (+)-ethyl-3-(acetoxy)-4,5-dihydroxytetrahydro-2H-pyran-2-carboxylate (FIQWAE, Hong et al., 2005) and 1-deoxy-D-lactose (XOJLUE, Guiry et al., 2008). In all these structures, the six-membered ring has a chair conformation.

Two hydroxy groups and an O atom of the pyranose ring form a system of O—H··· O hydrogen bonds that leads to the formation of an infinitive chain along the b axis (Table 1, Fig. 4). These hydrogen bonds of intermediate strength (Gilli & Gilli, 2009) result in a decrease of the O—H stretching vibrations frequency from the theoretical 3500 cm-1 for a "free" OH group to 3330 cm-1.

Only weak C—H···O (Table 1) contacts exist between neighboring chains. Similar bonds were observed in various carbohydrates (Desiraju & Steiner, 1999). A short intramolecular contact between oxygen O3 and H atom H1A of neighboring methylene group may additionally stabilize the conformation of the molecule.

Experimental

Crystals of the title compound were obtained as a side product of dehydration of D-mannitol (Fig. 1) in the form of thin plates (m.p. 454 (3) K) by spontaneous crystallization after chromatographic separation using a gradient of ethylacetate in hexane. A suitable crystal was cut out of a larger plate. Data collection was limited to θ = 25° because of the geometry of the instrument.

Exact mass MS (ESI): calc. for C20H24O5 +Na+: 367.1516; found 367.1507.

Optical rotation: αD +7.4° c 2.6 (DMSO)

1H NMR (300 MHz, DMSO-d6): 7.37–7.25 (H aromatic, 10H), 4.86 (d, J = 6.3 Hz, 1H, exchangeable), 4.83 (d, J = 11.1 Hz, 1H), 4.65 (d, J = 3.6 Hz, exchangeable), 4.51 (d, J = 11.6 Hz, 2H), 4.44 (d, J = 12.1 Hz, 1H), 3.76–3.39 (unresolved, 7H), 3.27–3.21 (unresolved, 1H).

13C NMR: 139.02, 138.42, 128.21, 128.10, 127.63, 127.39, 127.28, 78.66, 75.98, 74.36, 73.76, 72.33,* 69.77,* 69.69,* 69.29 (* negative signals in the Attached Proton Test).

FT–IR (Nicolet 400, diamond ATR): 3330 (very strong), 3064, 3033, 2916, 2862, 1495, 1452, 1328, 1082, 1067, 890, 692, 606, 530 cm-1.

Raman (Raman Systems 2.0; 785 nm laser): 1603, 1466, 1342, 1278, 1202, 1174, 1004 (very strong), 945, 821, 617, 431, 186 cm-1.

Refinement

The chirality of the title compound was known from the synthetic route. Therefore, Friedel pairs were treated as equivalents at data processing and were merged at refinement. Reflection 0 0 1 was obstructed by the beam stop and was omitted.

All H atoms were positioned geometrically with Uiso(H) = 1.2 or 1.5Ueq(C) with refined torsion angles for H4 and H5 (AFIX 147 command in SHELXL (Sheldrick, 2008a)).

Figures

Fig. 1.

Fig. 1.

Two possibilities of dehydration of D-mannitol relevant to the synthesis of 1,5-anhydro-D-mannitol and formation of the dibenzyl ethers.

Fig. 2.

Fig. 2.

ORTEP view of 1,5-anhydro-4,6-di-O-benzyl-D-mannitol with displacement ellipsoids drawn at the 50% probability level.

Fig. 3.

Fig. 3.

Chair conformation of the six-membered ring.

Fig. 4.

Fig. 4.

Infinitive chain of 2,6-anhydro-1,3-di-O-benzyl-D-mannitol molecules along the b axis. View along the a axis.

Fig. 5.

Fig. 5.

Additional figure.

Crystal data

C20H24O5 F(000) = 368
Mr = 344.39 Dx = 1.283 Mg m3
Monoclinic, P21 Melting point: 454(3) K
Hall symbol: P 2yb Mo Kα radiation, λ = 0.71073 Å
a = 5.6584 (10) Å Cell parameters from 2505 reflections
b = 7.9610 (12) Å θ = 2.1–25.0°
c = 19.808 (4) Å µ = 0.09 mm1
β = 91.968 (6)° T = 200 K
V = 891.8 (3) Å3 Plate, colourless
Z = 2 0.6 × 0.4 × 0.05 mm

Data collection

Bruker SMART X2S diffractometer 1695 independent reflections
Radiation source: XOS X-beam microfocus source 1458 reflections with I > 2σ(I)
doubly curved silicon crystal Rint = 0.052
ω scans θmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Sheldrick, 2008b) h = −6→6
Tmin = 0.91, Tmax = 0.98 k = −9→9
8624 measured reflections l = −23→23

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.082 H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0509P)2] where P = (Fo2 + 2Fc2)/3
1695 reflections (Δ/σ)max < 0.001
228 parameters Δρmax = 0.19 e Å3
1 restraint Δρmin = −0.14 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.5054 (4) 0.6502 (3) 0.64947 (9) 0.0699 (7)
O2 0.6876 (3) 0.44181 (18) 0.54580 (7) 0.0288 (4)
O3 0.8458 (3) 0.2160 (2) 0.70085 (7) 0.0329 (4)
O4 1.0068 (3) −0.0091 (2) 0.59915 (8) 0.0389 (4)
H4 0.9884 −0.0925 0.5735 0.047*
O5 1.0291 (3) 0.2171 (2) 0.48840 (8) 0.0311 (4)
H5 1.1187 0.1341 0.4836 0.037*
C1 0.7134 (5) 0.5512 (3) 0.65761 (12) 0.0426 (7)
H1A 0.7402 0.5208 0.7057 0.051*
H1B 0.8523 0.6151 0.6427 0.051*
C2 0.6801 (4) 0.3952 (3) 0.61547 (11) 0.0296 (5)
H2A 0.5206 0.3471 0.6240 0.036*
C3 0.8671 (4) 0.2607 (3) 0.63147 (10) 0.0272 (5)
H3A 1.0284 0.3072 0.6241 0.033*
C4 0.8223 (4) 0.1094 (3) 0.58552 (10) 0.0285 (5)
H4A 0.6689 0.0569 0.5976 0.034*
C5 0.8049 (4) 0.1607 (3) 0.51169 (11) 0.0275 (5)
H5A 0.7506 0.0621 0.4839 0.033*
C6 0.6287 (4) 0.3020 (3) 0.50228 (11) 0.0311 (5)
H6A 0.6261 0.3397 0.4546 0.037*
H6B 0.4687 0.2606 0.5123 0.037*
C9 1.0627 (4) 0.1952 (4) 0.73746 (12) 0.0466 (7)
H9A 1.1698 0.2896 0.7274 0.056*
H9B 1.1392 0.0897 0.7233 0.056*
C10 0.5053 (8) 0.7934 (4) 0.69327 (14) 0.0781 (12)
H10A 0.3683 0.8656 0.6807 0.094*
H10B 0.6509 0.8596 0.6867 0.094*
C11 1.0226 (4) 0.1894 (3) 0.81204 (11) 0.0358 (6)
C12 0.8296 (5) 0.2669 (4) 0.84079 (12) 0.0436 (7)
H12A 0.7150 0.3227 0.8127 0.052*
C13 0.8036 (5) 0.2634 (4) 0.90972 (13) 0.0538 (8)
H13A 0.6711 0.3162 0.9289 0.065*
C14 0.9691 (5) 0.1834 (5) 0.95082 (13) 0.0595 (9)
H14A 0.9516 0.1822 0.9983 0.071*
C15 1.1608 (5) 0.1049 (4) 0.92311 (13) 0.0579 (8)
H15A 1.2745 0.0488 0.9514 0.069*
C16 1.1858 (5) 0.1086 (4) 0.85404 (13) 0.0464 (7)
H16A 1.3177 0.0545 0.8351 0.056*
C21 0.4931 (5) 0.7468 (4) 0.76631 (13) 0.0437 (7)
C22 0.3085 (5) 0.6518 (4) 0.79079 (15) 0.0546 (8)
H22A 0.1873 0.6120 0.7605 0.066*
C23 0.2996 (6) 0.6149 (5) 0.85879 (17) 0.0656 (9)
H23A 0.1729 0.5496 0.8750 0.079*
C24 0.4711 (7) 0.6713 (5) 0.90252 (15) 0.0693 (10)
H24A 0.4632 0.6463 0.9493 0.083*
C25 0.6537 (6) 0.7633 (5) 0.87996 (16) 0.0699 (10)
H25A 0.7729 0.8032 0.9109 0.084*
C26 0.6663 (5) 0.7989 (4) 0.81241 (16) 0.0553 (8)
H26A 0.7974 0.8609 0.7970 0.066*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.1104 (18) 0.0642 (16) 0.0345 (10) 0.0575 (15) −0.0080 (10) −0.0070 (10)
O2 0.0307 (9) 0.0287 (10) 0.0270 (8) 0.0029 (7) 0.0009 (6) −0.0007 (7)
O3 0.0340 (8) 0.0391 (10) 0.0257 (7) 0.0029 (8) 0.0014 (6) 0.0036 (7)
O4 0.0506 (11) 0.0277 (10) 0.0382 (9) 0.0118 (9) −0.0026 (7) −0.0040 (7)
O5 0.0257 (8) 0.0284 (10) 0.0397 (9) 0.0018 (7) 0.0072 (6) 0.0026 (7)
C1 0.0646 (18) 0.0344 (16) 0.0288 (13) 0.0156 (14) 0.0024 (11) −0.0013 (11)
C2 0.0313 (13) 0.0317 (14) 0.0262 (11) 0.0024 (11) 0.0055 (9) 0.0001 (10)
C3 0.0256 (11) 0.0299 (14) 0.0263 (11) −0.0014 (10) 0.0041 (8) −0.0009 (10)
C4 0.0264 (12) 0.0259 (13) 0.0333 (12) −0.0015 (11) 0.0022 (9) −0.0001 (10)
C5 0.0225 (11) 0.0265 (13) 0.0336 (12) −0.0063 (10) 0.0030 (9) −0.0040 (10)
C6 0.0273 (12) 0.0346 (14) 0.0312 (12) −0.0036 (11) −0.0020 (9) −0.0030 (11)
C9 0.0378 (13) 0.066 (2) 0.0357 (13) 0.0138 (15) 0.0003 (10) −0.0026 (13)
C10 0.144 (3) 0.050 (2) 0.0422 (16) 0.048 (2) 0.0237 (18) 0.0006 (14)
C11 0.0359 (13) 0.0372 (16) 0.0341 (12) 0.0030 (12) −0.0020 (10) −0.0041 (11)
C12 0.0444 (15) 0.0501 (18) 0.0364 (13) 0.0080 (14) 0.0019 (10) −0.0003 (12)
C13 0.0500 (17) 0.067 (2) 0.0445 (15) 0.0013 (16) 0.0104 (12) −0.0051 (15)
C14 0.0630 (18) 0.087 (3) 0.0279 (13) −0.006 (2) −0.0005 (12) 0.0018 (15)
C15 0.0548 (18) 0.077 (2) 0.0411 (16) 0.0043 (18) −0.0142 (13) 0.0063 (16)
C16 0.0409 (15) 0.0557 (18) 0.0421 (15) 0.0055 (14) −0.0052 (11) −0.0024 (13)
C21 0.0590 (17) 0.0325 (16) 0.0403 (13) 0.0145 (14) 0.0118 (12) −0.0024 (12)
C22 0.0435 (16) 0.057 (2) 0.0626 (19) 0.0016 (16) −0.0069 (13) −0.0192 (16)
C23 0.062 (2) 0.064 (2) 0.073 (2) −0.0005 (18) 0.0332 (17) 0.0043 (19)
C24 0.078 (2) 0.088 (3) 0.0422 (16) 0.030 (2) 0.0101 (16) 0.0052 (17)
C25 0.0581 (19) 0.088 (3) 0.062 (2) 0.0231 (19) −0.0177 (15) −0.025 (2)
C26 0.0460 (17) 0.0468 (18) 0.074 (2) −0.0019 (15) 0.0154 (14) −0.0077 (16)

Geometric parameters (Å, °)

O1—C1 1.421 (3) C10—C21 1.498 (4)
O1—C10 1.433 (4) C10—H10A 0.9900
O2—C2 1.431 (3) C10—H10B 0.9900
O2—C6 1.440 (3) C11—C16 1.381 (3)
O3—C9 1.413 (3) C11—C12 1.393 (3)
O3—C3 1.429 (2) C12—C13 1.379 (3)
O4—C4 1.426 (3) C12—H12A 0.9500
O4—H4 0.8400 C13—C14 1.376 (4)
O5—C5 1.437 (2) C13—H13A 0.9500
O5—H5 0.8400 C14—C15 1.382 (4)
C1—C2 1.505 (3) C14—H14A 0.9500
C1—H1A 0.9900 C15—C16 1.381 (3)
C1—H1B 0.9900 C15—H15A 0.9500
C2—C3 1.531 (3) C16—H16A 0.9500
C2—H2A 1.0000 C21—C26 1.381 (4)
C3—C4 1.526 (3) C21—C22 1.390 (4)
C3—H3A 1.0000 C22—C23 1.381 (4)
C4—C5 1.518 (3) C22—H22A 0.9500
C4—H4A 1.0000 C23—C24 1.355 (5)
C5—C6 1.511 (3) C23—H23A 0.9500
C5—H5A 1.0000 C24—C25 1.355 (5)
C6—H6A 0.9900 C24—H24A 0.9500
C6—H6B 0.9900 C25—C26 1.372 (4)
C9—C11 1.503 (3) C25—H25A 0.9500
C9—H9A 0.9900 C26—H26A 0.9500
C9—H9B 0.9900
C1—O1—C10 113.0 (2) C11—C9—H9B 109.6
C2—O2—C6 111.27 (16) H9A—C9—H9B 108.1
C9—O3—C3 114.99 (16) O1—C10—C21 112.9 (3)
C4—O4—H4 109.5 O1—C10—H10A 109.0
C5—O5—H5 109.5 C21—C10—H10A 109.0
O1—C1—C2 107.9 (2) O1—C10—H10B 109.0
O1—C1—H1A 110.1 C21—C10—H10B 109.0
C2—C1—H1A 110.1 H10A—C10—H10B 107.8
O1—C1—H1B 110.1 C16—C11—C12 118.5 (2)
C2—C1—H1B 110.1 C16—C11—C9 119.1 (2)
H1A—C1—H1B 108.4 C12—C11—C9 122.4 (2)
O2—C2—C1 108.3 (2) C13—C12—C11 120.5 (2)
O2—C2—C3 109.75 (16) C13—C12—H12A 119.7
C1—C2—C3 112.95 (19) C11—C12—H12A 119.7
O2—C2—H2A 108.6 C14—C13—C12 120.1 (3)
C1—C2—H2A 108.6 C14—C13—H13A 119.9
C3—C2—H2A 108.6 C12—C13—H13A 119.9
O3—C3—C4 111.07 (18) C13—C14—C15 120.1 (2)
O3—C3—C2 107.03 (16) C13—C14—H14A 119.9
C4—C3—C2 109.23 (17) C15—C14—H14A 119.9
O3—C3—H3A 109.8 C16—C15—C14 119.5 (3)
C4—C3—H3A 109.8 C16—C15—H15A 120.2
C2—C3—H3A 109.8 C14—C15—H15A 120.2
O4—C4—C5 112.53 (17) C15—C16—C11 121.2 (3)
O4—C4—C3 107.68 (17) C15—C16—H16A 119.4
C5—C4—C3 111.47 (19) C11—C16—H16A 119.4
O4—C4—H4A 108.3 C26—C21—C22 117.3 (3)
C5—C4—H4A 108.3 C26—C21—C10 120.6 (3)
C3—C4—H4A 108.3 C22—C21—C10 122.1 (3)
O5—C5—C6 108.29 (18) C23—C22—C21 120.6 (3)
O5—C5—C4 111.39 (17) C23—C22—H22A 119.7
C6—C5—C4 109.87 (17) C21—C22—H22A 119.7
O5—C5—H5A 109.1 C24—C23—C22 120.2 (3)
C6—C5—H5A 109.1 C24—C23—H23A 119.9
C4—C5—H5A 109.1 C22—C23—H23A 119.9
O2—C6—C5 111.32 (16) C25—C24—C23 120.4 (3)
O2—C6—H6A 109.4 C25—C24—H24A 119.8
C5—C6—H6A 109.4 C23—C24—H24A 119.8
O2—C6—H6B 109.4 C24—C25—C26 120.0 (3)
C5—C6—H6B 109.4 C24—C25—H25A 120.0
H6A—C6—H6B 108.0 C26—C25—H25A 120.0
O3—C9—C11 110.49 (18) C25—C26—C21 121.6 (3)
O3—C9—H9A 109.6 C25—C26—H26A 119.2
C11—C9—H9A 109.6 C21—C26—H26A 119.2
O3—C9—H9B 109.6
C10—O1—C1—C2 173.3 (2) C3—O3—C9—C11 166.6 (2)
C6—O2—C2—C1 −173.07 (19) C1—O1—C10—C21 −66.9 (4)
C6—O2—C2—C3 63.2 (2) O3—C9—C11—C16 155.4 (3)
O1—C1—C2—O2 70.8 (2) O3—C9—C11—C12 −26.4 (4)
O1—C1—C2—C3 −167.49 (18) C16—C11—C12—C13 0.3 (4)
C9—O3—C3—C4 102.6 (2) C9—C11—C12—C13 −177.8 (3)
C9—O3—C3—C2 −138.2 (2) C11—C12—C13—C14 0.2 (5)
O2—C2—C3—O3 −178.27 (18) C12—C13—C14—C15 −0.7 (5)
C1—C2—C3—O3 60.8 (2) C13—C14—C15—C16 0.6 (5)
O2—C2—C3—C4 −57.9 (2) C14—C15—C16—C11 0.0 (5)
C1—C2—C3—C4 −178.85 (19) C12—C11—C16—C15 −0.4 (4)
O3—C3—C4—O4 −65.4 (2) C9—C11—C16—C15 177.8 (3)
C2—C3—C4—O4 176.82 (17) O1—C10—C21—C26 122.6 (3)
O3—C3—C4—C5 170.75 (16) O1—C10—C21—C22 −58.1 (4)
C2—C3—C4—C5 52.9 (2) C26—C21—C22—C23 1.1 (4)
O4—C4—C5—O5 −52.7 (2) C10—C21—C22—C23 −178.3 (3)
C3—C4—C5—O5 68.4 (2) C21—C22—C23—C24 0.2 (5)
O4—C4—C5—C6 −172.71 (18) C22—C23—C24—C25 −0.5 (5)
C3—C4—C5—C6 −51.6 (2) C23—C24—C25—C26 −0.4 (5)
C2—O2—C6—C5 −62.4 (2) C24—C25—C26—C21 1.7 (5)
O5—C5—C6—O2 −66.5 (2) C22—C21—C26—C25 −2.0 (4)
C4—C5—C6—O2 55.3 (2) C10—C21—C26—C25 177.3 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O4—H4···O5i 0.84 1.95 2.789 (2) 175
O5—H5···O2i 0.84 1.98 2.812 (2) 169
C1—H1A···O3 0.99 2.50 2.893 (3) 103
C6—H6B···O5ii 0.99 2.54 3.461 (3) 155

Symmetry codes: (i) −x+2, y−1/2, −z+1; (ii) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2379).

References

  1. Barker, R. (1970). J. Org. Chem. 35, 461–464.
  2. Boeyens, J. C. A. & Dobson, S. M. (1987). Stereochemistry of Metallic Macrocycles Stereochemical and Stereophysical Behaviour of Macrocycles, edited by I. Bernal, pp. 2–102. Amsterdam: Elsevier.
  3. Boeyens, J. C. A., Marais, J. L. C. & Perold, G. W. (1983). Phytochemistry, 22, 1959–1960.
  4. Bruker (2009). SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Bruker (2010). APEX2 and GIS Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  7. Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. Oxford University Press.
  8. Doboszewski, B. (1997). Nucleosides Nucleotides, 16, 1049–1052.
  9. Doboszewski, B. (2009). Nucleosides Nucleotides Nucleic Acids, 28, 875–901. [DOI] [PubMed]
  10. Doboszewski, B. & de Siqueria, E. C. (2010). Synth. Commun. 40, 744–748.
  11. Doboszewski, B. & Nazarenko, A. Y. (2003). Acta Cryst. E59, o158–o160.
  12. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  13. Gilli, G. & Gilli, P. (2009). The Nature of the Hydrogen Bond. Oxford University Press.
  14. Guiry, K. P., Coles, S. J., Moynihan, H. A. & Lawrence, S. E. (2008). Cryst. Growth Des. 8, 3927–3934.
  15. Hartman, L. (1970a). US Patent 3484459.
  16. Hartman, L. (1970b). US Patent 3480651.
  17. Hong, B.-C., Chen, Z.-Y., Nagarajan, A., Rudresha, K., Chavan, V., Chen, W.-H., Jiang, Y.-F., Zhang, S.-C., Lee, G.-H. & Sarshar, S. (2005). Tetrahedron Lett. 46, 1281–1285.
  18. Jeffrey, G. A. (1997). An Introduction to Hydrogen Bonding. Oxford University Press.
  19. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  20. Schwarz, J. C. P. (1973). J. Chem. Soc. Chem. Commun. pp. 505–508.
  21. Sheldrick, G. M. (2008a). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  22. Sheldrick, G. M. (2008b). SADABS University of Göttingen, Germany.
  23. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  24. Vidra, I., Simon, K., Institoris, L., Csoregh, I. & Czugler, M. (1982). Carbohydr. Res. 111, 41–57.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811022306/zl2379sup1.cif

e-67-o1653-sup1.cif (20.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811022306/zl2379Isup2.hkl

e-67-o1653-Isup2.hkl (83.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES