Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Jun 22;67(Pt 7):o1757. doi: 10.1107/S1600536811023579

2-Phenyl-5-(p-tol­yl)-1,3,4-oxadiazole

David B Cordes a, Guoxiong Hua a, Alexandra M Z Slawin a,*, J Derek Woollins a
PMCID: PMC3152068  PMID: 21837139

Abstract

The title compound, C15H12N2O, adopts the expected near-planar geometry, the phenyl and tolyl rings being inclined relative to the oxadiazole ring by 3.8 (3) and 8.3 (2)°, respectively. This allows adjacent mol­ecules to pack in a parallel fashion and form stacking along [010] via π–π inter­actions [centroid–centroid distances = 3.629 (2) and 3.723 (2) Å]. Further inter­molecular inter­actions include C—H⋯π inter­actions and weak C—H⋯N hydrogen bonds, giving rise to a crossed herringbone packing motif.

Related literature

For synthesis of the starting material N′-benzoyl-4-methyl­benzohydrazide, see: Hua et al. (2009). For a review of synthetic routes to the title compound, see: Weaver (2004). For related structures, see: Kuznetsov et al. (1998); Franco et al. (2003); Reck et al. (2003).graphic file with name e-67-o1757-scheme1.jpg

Experimental

Crystal data

  • C15H12N2O

  • M r = 236.27

  • Monoclinic, Inline graphic

  • a = 19.733 (5) Å

  • b = 5.1441 (12) Å

  • c = 12.436 (3) Å

  • β = 107.477 (6)°

  • V = 1204.1 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 93 K

  • 0.20 × 0.04 × 0.02 mm

Data collection

  • Rigaku Mercury CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2010) T min = 0.984, T max = 0.998

  • 7407 measured reflections

  • 2256 independent reflections

  • 1293 reflections with I > 2σ(I)

  • R int = 0.207

Refinement

  • R[F 2 > 2σ(F 2)] = 0.109

  • wR(F 2) = 0.307

  • S = 1.02

  • 2256 reflections

  • 164 parameters

  • H-atom parameters constrained

  • Δρmax = 0.85 e Å−3

  • Δρmin = −0.48 e Å−3

Data collection: CrystalClear (Rigaku, 2010); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811023579/su2281sup1.cif

e-67-o1757-sup1.cif (21.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811023579/su2281Isup2.hkl

e-67-o1757-Isup2.hkl (110.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811023579/su2281Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the C3–C8 and C10–C15 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11⋯N2i 0.95 2.61 3.322 (4) 132
C9—H9BCg1ii 0.98 2.80 3.731 (4) 158
C14—H14⋯Cg2iii 0.95 2.99 3.783 (4) 141

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors are grateful to the University of St. Andrews and the Engineering and Physical Science Research Council (EPSRC, UK) for financial support.

supplementary crystallographic information

Comment

The title compound (Fig. 1), previously prepared by a number of different routes (Weaver, 2004), has been prepared by a new method, reacting Woollins' reagent with N'-benzoyl-4-methylbenzohydrazide (Hua et al., 2009). It adopts an offset π-stacked packing motif, similar to those seen in related structures (Kuznetsov et al., 1998, Franco et al., 2003, and Reck et al., 2003), the oxadiazole ring interacting with both the tolyl (x, 1 + y, z) and the phenyl (x, -1 + y, z) rings of adjacent molecules [centroid-centroid distances of 3.629 (2) and 3.723 (2) Å, respectively]. As a result of this arrangement, one of the tolyl methyl H atoms forms a C—H···π interaction with the adjacent tolyl π-system (Table 1). The stacks run along the [0 1 0] direction, and form herringbone sheets in the (0 0 1) plane (Fig. 2), via further C—H···π interactions (Table 1). These sheets resemble the herringbone packing motif seen previously in the structures of 2,5-diphenyl-1,3,4-oxadiazole (Kuznetsov et al., 1998, and Franco et al., 2003). However, adjacent sheets do not align, and instead are offset, forming a crossed herringbone pattern (Fig. 3), interacting via C—H···N hydrogen bonds (Table 1).

Footnote to Table 1: Cg1 = centroid of ring (C3-C8); Cg2 = centroid of ring (C10-C15).

Experimental

A red suspension of N'-benzoyl-4-methylbenzohydrazide (0.25 g, 1.0 mmol, Hua et al., 2009) and Woollins' reagent (0.54 g, 1.0 mmol) in 20 ml of dry toluene was refluxed for 7 h. Following cooling to room temperature and removal of the solvent in vacuuo the residue was purified by silica gel column chromatography (1: 9 ethyl acetate/dichloromethane eluent) to give 2-phenyl-5-p-tolyl-1,3,4-selenadiazole as a dark yellow solid in good yield (0.270 g, 90%). The title compound was formed from this by air oxidation during the growth of X-ray quality crystals from the diffusion of hexane into a dichloromethane solution of 2-phenyl-5-p-tolyl-1,3,4-selenadiazole.

Refinement

The crystal initially chosen appeared to be poorly diffracting at higher angles, so several others were also tried. All were found to be weakly diffracting, resulting in a number of missing independent data in the experimentally measured range. One low angle reflection (1 0 4) was omitted due to being partially behind the beamstop. All H atoms were included in calculated positions (C—H distances are 0.98 Å for methyl H atoms and 0.95 Å for phenyl H atoms) and refined as riding atoms with Uiso(H) = 1.2 Ueq(parent atom, phenyl H atoms) or Uiso(H) = 1.5 Ueq (parent atom, methyl H atoms). The highest electron density peak is located 1.19 Å from atom O1.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.

Fig. 2.

Fig. 2.

View down the c-axis showing the π-stacking of adjacent molecules and the formation of the herringbone sheet.

Fig. 3.

Fig. 3.

Packing diagram of the title compound showing the crossed herringbone pattern arising from offset of adjacent herringbone sheets. Hydrogen atoms were omitted for clarity.

Crystal data

C15H12N2O F(000) = 496
Mr = 236.27 Dx = 1.303 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 2748 reflections
a = 19.733 (5) Å θ = 3.3–28.2°
b = 5.1441 (12) Å µ = 0.08 mm1
c = 12.436 (3) Å T = 93 K
β = 107.477 (6)° Chip, colourless
V = 1204.1 (5) Å3 0.20 × 0.04 × 0.02 mm
Z = 4

Data collection

Rigaku Mercury CCD diffractometer 2256 independent reflections
Radiation source: rotating anode 1293 reflections with I > 2σ(I)
confocal Rint = 0.207
Detector resolution: 14.7059 pixels mm-1 θmax = 27.5°, θmin = 3.3°
ω and φ scans h = −24→24
Absorption correction: multi-scan (CrystalClear; Rigaku, 2010) k = −3→6
Tmin = 0.984, Tmax = 0.998 l = −11→14
7407 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.109 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.307 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.1532P)2] where P = (Fo2 + 2Fc2)/3
2256 reflections (Δ/σ)max < 0.001
164 parameters Δρmax = 0.85 e Å3
0 restraints Δρmin = −0.48 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.26886 (13) 0.5359 (5) 0.70037 (19) 0.0337 (8)
N1 0.24323 (17) 0.4502 (6) 0.5190 (3) 0.0374 (9)
N2 0.29187 (16) 0.6544 (6) 0.5435 (2) 0.0334 (9)
C1 0.2307 (2) 0.3862 (7) 0.6126 (3) 0.0322 (10)
C2 0.30560 (19) 0.6981 (7) 0.6502 (3) 0.0299 (10)
C3 0.18313 (19) 0.1875 (8) 0.6309 (3) 0.0306 (10)
C4 0.1822 (2) 0.1219 (7) 0.7391 (3) 0.0330 (10)
H4 0.2132 0.2077 0.8027 0.040*
C5 0.1364 (2) −0.0672 (8) 0.7541 (3) 0.0354 (10)
H5 0.1369 −0.1109 0.8285 0.042*
C6 0.0898 (2) −0.1957 (8) 0.6643 (3) 0.0344 (10)
C7 0.0919 (2) −0.1274 (8) 0.5552 (3) 0.0413 (11)
H7 0.0606 −0.2120 0.4917 0.050*
C8 0.1378 (2) 0.0573 (8) 0.5385 (3) 0.0374 (11)
H8 0.1388 0.0967 0.4643 0.045*
C9 0.0394 (2) −0.3978 (8) 0.6791 (3) 0.0421 (11)
H9A 0.0416 −0.4078 0.7588 0.063*
H9B 0.0524 −0.5665 0.6544 0.063*
H9C −0.0090 −0.3520 0.6339 0.063*
C10 0.35306 (19) 0.8918 (7) 0.7193 (3) 0.0307 (10)
C11 0.3641 (2) 0.9055 (7) 0.8354 (3) 0.0368 (11)
H11 0.3400 0.7895 0.8708 0.044*
C12 0.4102 (2) 1.0888 (8) 0.8982 (3) 0.0400 (11)
H12 0.4191 1.0945 0.9776 0.048*
C13 0.4437 (2) 1.2640 (8) 0.8470 (3) 0.0392 (11)
H13 0.4743 1.3924 0.8910 0.047*
C14 0.4327 (2) 1.2533 (7) 0.7316 (3) 0.0347 (10)
H14 0.4565 1.3710 0.6964 0.042*
C15 0.3871 (2) 1.0705 (7) 0.6692 (3) 0.0344 (10)
H15 0.3785 1.0657 0.5898 0.041*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0369 (16) 0.0242 (16) 0.0432 (18) −0.0030 (12) 0.0167 (13) −0.0033 (11)
N1 0.041 (2) 0.032 (2) 0.042 (2) 0.0020 (17) 0.0165 (16) 0.0037 (14)
N2 0.042 (2) 0.035 (2) 0.0250 (19) −0.0011 (16) 0.0129 (14) −0.0061 (13)
C1 0.034 (2) 0.023 (2) 0.040 (2) 0.0001 (18) 0.0135 (17) 0.0024 (17)
C2 0.034 (2) 0.019 (2) 0.044 (2) 0.0064 (17) 0.0223 (18) 0.0073 (16)
C3 0.032 (2) 0.027 (2) 0.036 (2) 0.0054 (17) 0.0139 (16) −0.0013 (16)
C4 0.035 (2) 0.032 (2) 0.035 (2) 0.0026 (18) 0.0156 (17) 0.0019 (16)
C5 0.039 (2) 0.032 (2) 0.036 (2) 0.0031 (19) 0.0132 (18) −0.0024 (17)
C6 0.037 (2) 0.026 (2) 0.045 (3) 0.0041 (18) 0.0200 (18) 0.0008 (17)
C7 0.040 (3) 0.031 (3) 0.050 (3) −0.002 (2) 0.0088 (19) −0.0091 (18)
C8 0.043 (3) 0.035 (3) 0.033 (2) 0.001 (2) 0.0103 (18) −0.0036 (17)
C9 0.039 (2) 0.035 (3) 0.052 (3) 0.003 (2) 0.013 (2) −0.0038 (18)
C10 0.035 (2) 0.022 (2) 0.040 (2) 0.0086 (17) 0.0188 (18) −0.0012 (16)
C11 0.046 (3) 0.027 (2) 0.043 (3) 0.005 (2) 0.0228 (19) 0.0003 (17)
C12 0.051 (3) 0.033 (3) 0.040 (3) 0.005 (2) 0.017 (2) −0.0025 (18)
C13 0.042 (3) 0.032 (3) 0.044 (3) 0.000 (2) 0.0139 (19) −0.0099 (18)
C14 0.038 (2) 0.030 (2) 0.035 (2) −0.0008 (19) 0.0098 (17) 0.0056 (17)
C15 0.040 (2) 0.033 (2) 0.030 (2) 0.0092 (19) 0.0103 (17) 0.0068 (17)

Geometric parameters (Å, °)

O1—C1 1.363 (4) C7—H7 0.9500
O1—C2 1.372 (4) C8—H8 0.9500
N1—C1 1.304 (4) C9—H9A 0.9800
N1—N2 1.393 (4) C9—H9B 0.9800
N2—C2 1.293 (4) C9—H9C 0.9800
C1—C3 1.451 (5) C10—C15 1.391 (5)
C2—C10 1.458 (5) C10—C11 1.396 (5)
C3—C4 1.394 (5) C11—C12 1.379 (6)
C3—C8 1.397 (5) C11—H11 0.9500
C4—C5 1.378 (5) C12—C13 1.381 (5)
C4—H4 0.9500 C12—H12 0.9500
C5—C6 1.383 (5) C13—C14 1.386 (5)
C5—H5 0.9500 C13—H13 0.9500
C6—C7 1.414 (5) C14—C15 1.371 (5)
C6—C9 1.488 (5) C14—H14 0.9500
C7—C8 1.371 (5) C15—H15 0.9500
C1—O1—C2 102.7 (3) C3—C8—H8 120.1
C1—N1—N2 107.3 (3) C6—C9—H9A 109.5
C2—N2—N1 105.9 (3) C6—C9—H9B 109.5
N1—C1—O1 111.4 (3) H9A—C9—H9B 109.5
N1—C1—C3 128.5 (4) C6—C9—H9C 109.5
O1—C1—C3 120.1 (3) H9A—C9—H9C 109.5
N2—C2—O1 112.6 (3) H9B—C9—H9C 109.5
N2—C2—C10 128.6 (3) C15—C10—C11 118.9 (4)
O1—C2—C10 118.8 (3) C15—C10—C2 119.9 (3)
C4—C3—C8 119.2 (4) C11—C10—C2 121.1 (3)
C4—C3—C1 121.2 (4) C12—C11—C10 119.5 (4)
C8—C3—C1 119.6 (3) C12—C11—H11 120.3
C5—C4—C3 120.0 (4) C10—C11—H11 120.3
C5—C4—H4 120.0 C11—C12—C13 120.7 (4)
C3—C4—H4 120.0 C11—C12—H12 119.6
C4—C5—C6 122.2 (3) C13—C12—H12 119.6
C4—C5—H5 118.9 C12—C13—C14 120.3 (4)
C6—C5—H5 118.9 C12—C13—H13 119.9
C5—C6—C7 116.9 (4) C14—C13—H13 119.9
C5—C6—C9 122.8 (3) C15—C14—C13 119.0 (3)
C7—C6—C9 120.4 (4) C15—C14—H14 120.5
C8—C7—C6 121.9 (4) C13—C14—H14 120.5
C8—C7—H7 119.0 C14—C15—C10 121.5 (3)
C6—C7—H7 119.0 C14—C15—H15 119.2
C7—C8—C3 119.7 (3) C10—C15—H15 119.2
C7—C8—H8 120.1
C1—N1—N2—C2 0.4 (4) C5—C6—C7—C8 0.0 (6)
N2—N1—C1—O1 −0.4 (4) C9—C6—C7—C8 −179.8 (4)
N2—N1—C1—C3 179.0 (4) C6—C7—C8—C3 −1.4 (6)
C2—O1—C1—N1 0.3 (4) C4—C3—C8—C7 1.7 (6)
C2—O1—C1—C3 −179.3 (3) C1—C3—C8—C7 −178.9 (3)
N1—N2—C2—O1 −0.2 (4) N2—C2—C10—C15 4.1 (6)
N1—N2—C2—C10 −179.9 (4) O1—C2—C10—C15 −175.5 (3)
C1—O1—C2—N2 0.0 (4) N2—C2—C10—C11 −177.2 (4)
C1—O1—C2—C10 179.7 (3) O1—C2—C10—C11 3.2 (5)
N1—C1—C3—C4 172.1 (4) C15—C10—C11—C12 −2.3 (5)
O1—C1—C3—C4 −8.5 (5) C2—C10—C11—C12 179.0 (3)
N1—C1—C3—C8 −7.3 (6) C10—C11—C12—C13 2.2 (6)
O1—C1—C3—C8 172.1 (3) C11—C12—C13—C14 −1.8 (6)
C8—C3—C4—C5 −0.7 (5) C12—C13—C14—C15 1.5 (6)
C1—C3—C4—C5 179.9 (3) C13—C14—C15—C10 −1.7 (6)
C3—C4—C5—C6 −0.7 (6) C11—C10—C15—C14 2.1 (5)
C4—C5—C6—C7 1.1 (6) C2—C10—C15—C14 −179.2 (3)
C4—C5—C6—C9 −179.1 (3)

Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C3–C8 and C10–C15 rings, respectively.
D—H···A D—H H···A D···A D—H···A
C11—H11···N2i 0.95 2.61 3.322 (4) 132.
C9—H9B···Cg1ii 0.98 2.80 3.731 (4) 158.
C14—H14···Cg2iii 0.95 2.99 3.783 (4) 141.

Symmetry codes: (i) x, −y+3/2, z+1/2; (ii) x, y−1, z; (iii) −x+1, y+1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2281).

References

  1. Franco, O., Reck, G., Orgzall, I., Schulz, B. W. & Schulz, B. (2003). J. Mol. Struct. 649, 219–230.
  2. Hua, G., Li, Y., Fuller, A. L., Slawin, A. M. Z. & Woollins, J. D. (2009). Eur. J. Org. Chem. pp. 1612–1618.
  3. Kuznetsov, V. P., Patsenker, L. D., Lokshin, A. I. & Tolmachev, A. V. (1998). Kristallografiya, 43, 468–477.
  4. Reck, G., Orgzall, I. & Schulz, B. (2003). Acta Cryst. E59, o1135–o1136. [DOI] [PubMed]
  5. Rigaku (2010). CrystalClear Rigaku Americas, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  8. Weaver, G. W. (2004). Sci. Synth. 13, 219-251.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811023579/su2281sup1.cif

e-67-o1757-sup1.cif (21.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811023579/su2281Isup2.hkl

e-67-o1757-Isup2.hkl (110.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811023579/su2281Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES