Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Jun 25;67(Pt 7):o1785. doi: 10.1107/S1600536811023683

2,6-Dichloro-3-nitro­pyridine

Hoong-Kun Fun a,*,, Suhana Arshad a, B Chandrakantha b, Arun M Isloor c, Prakash Shetty d
PMCID: PMC3152078  PMID: 21837158

Abstract

The asymmetric unit of the title compound, C5H2Cl2N2O2, consists of two crystallographically independent mol­ecules. The pyridine ring in each mol­ecule is essentially planar, with maximum deviations of 0.004 (4) and 0.007 (4) Å. Short Cl⋯O [3.09 (3) and 3.13 (4) Å] and Cl⋯Cl [3.38 (12) Å] contacts were observed. No significant inter­molecular inter­actions were observed in the crystal packing.

Related literature

For the role of the nitro­pyridine nucleus in the development of medicinal agents and in the field of agrochemicals, see: Davis et al. (1996). For the properties and use of pyridine derivatives, see: Vacher et al. (1998); Olah et al. (1980); Bare et al. (1989). For standard bond lengths, see: Allen et al. (1987). For the melting point, see: Johnson et al. (1967). graphic file with name e-67-o1785-scheme1.jpg

Experimental

Crystal data

  • C5H2Cl2N2O2

  • M r = 192.99

  • Monoclinic, Inline graphic

  • a = 7.9021 (8) Å

  • b = 19.166 (2) Å

  • c = 11.0987 (9) Å

  • β = 122.072 (5)°

  • V = 1424.4 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.85 mm−1

  • T = 296 K

  • 0.40 × 0.27 × 0.24 mm

Data collection

  • Bruker SMART APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.727, T max = 0.821

  • 16845 measured reflections

  • 4817 independent reflections

  • 2323 reflections with I > 2σ(I)

  • R int = 0.060

Refinement

  • R[F 2 > 2σ(F 2)] = 0.067

  • wR(F 2) = 0.180

  • S = 1.08

  • 4817 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.42 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811023683/ng5183sup1.cif

e-67-o1785-sup1.cif (16.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811023683/ng5183Isup2.hkl

e-67-o1785-Isup2.hkl (236KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811023683/ng5183Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). SA thanks the Malaysian Government and USM for the award of a research scholarship. AMI thanks the Department of Atomic Energy, Board for Research in Nuclear Sciences, Government of India for a Young Scientist award.

supplementary crystallographic information

Comment

Nitropyridine nucleus played a pivotal role in the development of different medicinal agents and in the field of agrochemicals (Davis et al., 1996). It is seen from the current literature that pyridine derivatives have been developed and used as insecticidal agents (Vacher et al., 1998). Nitrated pyridines and their derivatives are important intermediates in synthesis of heterocyclic compounds in dyes and pharmaceutical products (Olah et al., 1980). Fused heterocycles containing nitropyridine systems have been associated with several biological and medicinal activities including antiolytic (Olah et al., 1980), antiviral and anti-inflammatory (Bare et al., 1989) profiles.

The asymmetric unit of the tittle compound (Fig. 1), consists of two crystallographically independent molecules A and B. The pyridine rings (N1/C1–C5) for molecules A and B are essentially planar with maximum deviations of 0.004 (4) Å at atom C1A and 0.007 (4) Å at atom C3B, respectively. The bond lengths (Allen et al., 1987) and angles are within normal ranges. In addition, short Cl···O [Cl1A···O2A (1 - x, -1/2 + y, 1/2 - z) = 3.093 (3) Å and Cl2A···O2A (1 - x, 2 - y, -z) = 3.132 (4) Å] and Cl···Cl [Cl2A···Cl2A (1 - x, 2 - y, -z) = 3.3839 (12) Å] contacts were observed.

The crystal packing is shown in Fig. 2. No significant intermolecular interactions were observed in the crystal packing.

Experimental

2,6-Dichloropyridine (5 g, 0.033 mol) was added lotwise to mixture of concentrated H2SO4 (25 ml) and fuming nitric acid (10 ml) at 0 °C. After the addition, the reaction mixture was heated to 65 °C for 2 h. After completion of the reaction, the reaction mixture was cooled to room temperature and quenched with ice water. The solid that separated out was filtered and dried under vacuum. The crude product was purified by column chromatography using silica gel 60–120 mesh size and petroleum ether: ethyl acetate as eluent to afford title compound as a pale yellow solid. Yield: 3.0 g, 46.0%. M.p.: 333–338 K (Johnson et al., 1967).

Refinement

All H atoms were positioned geometrically [C–H = 0.93 Å] and refined using a riding model with Uiso(H) = 1.2 Ueq(C). There is no pseudo-symmetry in the crystal structure.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing the two independent molecules with atom labels and 30% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

The crystal packing of the title compound.

Crystal data

C5H2Cl2N2O2 F(000) = 768
Mr = 192.99 Dx = 1.800 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 3419 reflections
a = 7.9021 (8) Å θ = 2.4–31.7°
b = 19.166 (2) Å µ = 0.85 mm1
c = 11.0987 (9) Å T = 296 K
β = 122.072 (5)° Block, yellow
V = 1424.4 (2) Å3 0.40 × 0.27 × 0.24 mm
Z = 8

Data collection

Bruker SMART APEXII DUO CCD area-detector diffractometer 4817 independent reflections
Radiation source: fine-focus sealed tube 2323 reflections with I > 2σ(I)
graphite Rint = 0.060
φ and ω scans θmax = 31.8°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −11→11
Tmin = 0.727, Tmax = 0.821 k = −28→28
16845 measured reflections l = −16→16

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.067 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.180 H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0527P)2 + 1.2999P] where P = (Fo2 + 2Fc2)/3
4817 reflections (Δ/σ)max = 0.001
199 parameters Δρmax = 0.55 e Å3
0 restraints Δρmin = −0.42 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1A 0.51344 (18) 0.68002 (5) 0.26085 (12) 0.0667 (3)
Cl2A 0.49627 (16) 0.91466 (4) 0.03753 (9) 0.0540 (3)
O1A 0.6135 (4) 1.00995 (14) 0.4256 (3) 0.0656 (8)
O2A 0.4472 (5) 1.01996 (13) 0.1975 (3) 0.0641 (8)
N1A 0.5042 (4) 0.80475 (13) 0.1709 (3) 0.0411 (6)
N2A 0.5284 (4) 0.98557 (14) 0.3053 (3) 0.0433 (6)
C1A 0.5404 (5) 0.87035 (18) 0.4058 (3) 0.0445 (8)
H1A 0.5538 0.8926 0.4848 0.053*
C2A 0.5356 (5) 0.79924 (18) 0.3979 (4) 0.0463 (8)
H2A 0.5436 0.7720 0.4701 0.056*
C3A 0.5182 (5) 0.76941 (15) 0.2786 (3) 0.0397 (7)
C4A 0.5072 (5) 0.87406 (15) 0.1788 (3) 0.0359 (7)
C5A 0.5251 (5) 0.90936 (15) 0.2945 (3) 0.0351 (7)
Cl1B 1.01800 (19) 0.67408 (5) 0.25606 (12) 0.0673 (3)
Cl2B 0.98563 (15) 0.91167 (5) 0.03234 (9) 0.0532 (3)
O1B 0.9156 (5) 1.00415 (15) 0.3366 (3) 0.0731 (9)
O2B 1.1216 (5) 1.01192 (14) 0.2658 (3) 0.0663 (8)
N1B 1.0071 (4) 0.79906 (13) 0.1667 (3) 0.0403 (6)
N2B 1.0196 (5) 0.97918 (15) 0.2975 (3) 0.0470 (7)
C1B 1.0342 (5) 0.86410 (18) 0.4000 (3) 0.0450 (8)
H1B 1.0422 0.8863 0.4773 0.054*
C2B 1.0342 (5) 0.79259 (19) 0.3928 (4) 0.0481 (8)
H2B 1.0421 0.7650 0.4646 0.058*
C3B 1.0218 (5) 0.76313 (16) 0.2741 (3) 0.0427 (8)
C4B 1.0086 (5) 0.86795 (16) 0.1754 (3) 0.0356 (7)
C5B 1.0219 (5) 0.90270 (16) 0.2895 (3) 0.0376 (7)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1A 0.0972 (8) 0.0347 (4) 0.0768 (7) 0.0060 (5) 0.0521 (7) 0.0129 (4)
Cl2A 0.0868 (7) 0.0430 (4) 0.0416 (5) −0.0036 (4) 0.0405 (5) 0.0053 (3)
O1A 0.085 (2) 0.0609 (17) 0.0551 (16) −0.0130 (15) 0.0404 (16) −0.0206 (13)
O2A 0.093 (2) 0.0406 (13) 0.0633 (17) 0.0096 (13) 0.0444 (17) 0.0094 (12)
N1A 0.0520 (18) 0.0343 (12) 0.0418 (15) 0.0003 (12) 0.0281 (14) 0.0016 (11)
N2A 0.0494 (17) 0.0377 (13) 0.0509 (17) −0.0023 (12) 0.0321 (15) −0.0046 (12)
C1A 0.049 (2) 0.056 (2) 0.0346 (17) 0.0028 (16) 0.0257 (17) 0.0035 (14)
C2A 0.050 (2) 0.055 (2) 0.0391 (18) 0.0067 (16) 0.0274 (17) 0.0137 (15)
C3A 0.0457 (19) 0.0331 (14) 0.0429 (18) 0.0047 (13) 0.0252 (17) 0.0086 (13)
C4A 0.0435 (19) 0.0332 (14) 0.0329 (16) 0.0010 (13) 0.0215 (15) 0.0025 (11)
C5A 0.0392 (18) 0.0337 (14) 0.0353 (16) 0.0015 (13) 0.0218 (14) 0.0012 (12)
Cl1B 0.0970 (9) 0.0390 (5) 0.0691 (7) 0.0050 (5) 0.0463 (6) 0.0105 (4)
Cl2B 0.0762 (7) 0.0501 (5) 0.0381 (4) −0.0015 (4) 0.0335 (5) 0.0079 (3)
O1B 0.084 (2) 0.0648 (18) 0.093 (2) 0.0032 (15) 0.062 (2) −0.0159 (16)
O2B 0.093 (2) 0.0517 (15) 0.0721 (18) −0.0135 (15) 0.0556 (18) −0.0038 (13)
N1B 0.0452 (16) 0.0392 (14) 0.0387 (15) 0.0028 (12) 0.0238 (13) 0.0050 (11)
N2B 0.0530 (18) 0.0447 (15) 0.0421 (16) −0.0030 (14) 0.0244 (15) −0.0050 (12)
C1B 0.051 (2) 0.0542 (19) 0.0355 (17) −0.0033 (16) 0.0268 (17) −0.0007 (14)
C2B 0.052 (2) 0.059 (2) 0.0369 (18) −0.0006 (17) 0.0255 (17) 0.0104 (15)
C3B 0.046 (2) 0.0391 (16) 0.0417 (19) 0.0036 (14) 0.0224 (17) 0.0085 (14)
C4B 0.0360 (18) 0.0426 (16) 0.0296 (15) 0.0014 (13) 0.0183 (14) 0.0045 (12)
C5B 0.0385 (18) 0.0420 (16) 0.0358 (16) −0.0011 (14) 0.0221 (15) 0.0013 (13)

Geometric parameters (Å, °)

Cl1A—C3A 1.723 (3) Cl1B—C3B 1.717 (3)
Cl2A—C4A 1.711 (3) Cl2B—C4B 1.717 (3)
O1A—N2A 1.224 (3) O1B—N2B 1.214 (4)
O2A—N2A 1.209 (4) O2B—N2B 1.211 (4)
N1A—C4A 1.331 (4) N1B—C4B 1.323 (4)
N1A—C3A 1.326 (4) N1B—C3B 1.327 (4)
N2A—C5A 1.465 (4) N2B—C5B 1.469 (4)
C1A—C2A 1.365 (5) C1B—C2B 1.373 (5)
C1A—C5A 1.393 (4) C1B—C5B 1.391 (4)
C1A—H1A 0.9300 C1B—H1B 0.9300
C2A—C3A 1.381 (5) C2B—C3B 1.389 (5)
C2A—H2A 0.9300 C2B—H2B 0.9300
C4A—C5A 1.391 (4) C4B—C5B 1.385 (4)
C4A—N1A—C3A 117.4 (3) C4B—N1B—C3B 117.3 (3)
O2A—N2A—O1A 124.5 (3) O2B—N2B—O1B 125.5 (3)
O2A—N2A—C5A 119.0 (3) O2B—N2B—C5B 117.9 (3)
O1A—N2A—C5A 116.5 (3) O1B—N2B—C5B 116.6 (3)
C2A—C1A—C5A 119.5 (3) C2B—C1B—C5B 118.8 (3)
C2A—C1A—H1A 120.2 C2B—C1B—H1B 120.6
C5A—C1A—H1A 120.2 C5B—C1B—H1B 120.6
C1A—C2A—C3A 117.4 (3) C1B—C2B—C3B 117.3 (3)
C1A—C2A—H2A 121.3 C1B—C2B—H2B 121.4
C3A—C2A—H2A 121.3 C3B—C2B—H2B 121.4
N1A—C3A—C2A 124.8 (3) N1B—C3B—C2B 124.7 (3)
N1A—C3A—Cl1A 114.8 (2) N1B—C3B—Cl1B 115.0 (3)
C2A—C3A—Cl1A 120.4 (2) C2B—C3B—Cl1B 120.2 (3)
N1A—C4A—C5A 122.4 (3) N1B—C4B—C5B 122.7 (3)
N1A—C4A—Cl2A 113.8 (2) N1B—C4B—Cl2B 115.3 (2)
C5A—C4A—Cl2A 123.8 (2) C5B—C4B—Cl2B 122.0 (2)
C1A—C5A—C4A 118.4 (3) C4B—C5B—C1B 119.1 (3)
C1A—C5A—N2A 118.2 (3) C4B—C5B—N2B 122.5 (3)
C4A—C5A—N2A 123.3 (3) C1B—C5B—N2B 118.4 (3)
C5A—C1A—C2A—C3A 0.9 (5) C5B—C1B—C2B—C3B 0.0 (5)
C4A—N1A—C3A—C2A 0.0 (5) C4B—N1B—C3B—C2B 1.5 (5)
C4A—N1A—C3A—Cl1A −180.0 (3) C4B—N1B—C3B—Cl1B 179.7 (2)
C1A—C2A—C3A—N1A −0.6 (6) C1B—C2B—C3B—N1B −1.1 (6)
C1A—C2A—C3A—Cl1A 179.4 (3) C1B—C2B—C3B—Cl1B −179.2 (3)
C3A—N1A—C4A—C5A 0.3 (5) C3B—N1B—C4B—C5B −0.9 (5)
C3A—N1A—C4A—Cl2A 178.0 (2) C3B—N1B—C4B—Cl2B −179.1 (2)
C2A—C1A—C5A—C4A −0.6 (5) N1B—C4B—C5B—C1B 0.0 (5)
C2A—C1A—C5A—N2A 179.3 (3) Cl2B—C4B—C5B—C1B 178.1 (3)
N1A—C4A—C5A—C1A 0.0 (5) N1B—C4B—C5B—N2B −178.8 (3)
Cl2A—C4A—C5A—C1A −177.5 (3) Cl2B—C4B—C5B—N2B −0.7 (5)
N1A—C4A—C5A—N2A −179.9 (3) C2B—C1B—C5B—C4B 0.5 (5)
Cl2A—C4A—C5A—N2A 2.6 (5) C2B—C1B—C5B—N2B 179.3 (3)
O2A—N2A—C5A—C1A −153.8 (3) O2B—N2B—C5B—C4B −44.8 (5)
O1A—N2A—C5A—C1A 25.6 (4) O1B—N2B—C5B—C4B 135.7 (4)
O2A—N2A—C5A—C4A 26.1 (5) O2B—N2B—C5B—C1B 136.4 (3)
O1A—N2A—C5A—C4A −154.5 (3) O1B—N2B—C5B—C1B −43.0 (5)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG5183).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bare, T. M., McLaren, C. D., Campbell, D. J. B., Firor, J. W., Resch, J. F., Walters, C. P., Salama, A. I., Meiners, B. A. & Patel, J. B. (1989). J. Med. Chem. 32, 2561–2573. [DOI] [PubMed]
  3. Bruker (2009). SADABS, APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Davis, L., Olsen, G. E., Klein, J. T., Kapples, K. J., Huger, F. P., Smith, C. P., Petko, W. W., Cornfeldt, M. & Effland, R. C. (1996). J. Med. Chem. 39, 582–587. [DOI] [PubMed]
  5. Johnson, C. D., Katritzky, A. R., Ridgewell, B. J. & Viney, M. (1967). J. Chem. Soc. B. pp. 1204–1210.
  6. Olah, G. A., Narang, S. C., Olah, J. A., Pearson, R. L. & Cupas, C. A. (1980). J. Am. Chem. Soc. 102, 3507–3510.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  9. Vacher, B., Bonnaud, B., Funes, P., Jubault, N., Koek, W., Assié, M.-B. & Cosi, C. (1998). J. Med. Chem. 41, 5070–5083. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811023683/ng5183sup1.cif

e-67-o1785-sup1.cif (16.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811023683/ng5183Isup2.hkl

e-67-o1785-Isup2.hkl (236KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811023683/ng5183Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES