Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Jun 11;67(Pt 7):o1619. doi: 10.1107/S1600536811021489

Ethyl 3,3,3-trifluoro-2-hy­droxy-2-(5-meth­oxy-1H-indol-3-yl)propionate

Zukhra Kadirova a,*, Samat Tolipov b, Oleg Fedorovskiy c, Ibragimov Bakhtiyar b, Nusrat Parpiev d
PMCID: PMC3152102  PMID: 21837025

Abstract

In the title compound, C14H14F3NO4, the 3,3,3-trifluoro­pyruvate fragment has a syn configuration and is noncoplanar with the indole plane [dihedral angle = 84.87 (5)°]. In the crystal, mol­ecules form inversion-related dimers via pairs of inter­molecular O—H⋯O hydrogen bonds. These dimers are connected by inter­molecular N—H⋯O=C(CF3) hydrogen bonds to form a two-dimensional network structure.

Related literature

For background on the synthesis and activity of trifluoro­pyruvates of indole, see: Nakamura et al. (2008); Abid et al. (2008). For the crystal structures of related compounds, see: Choudhury et al. (2004); Abid et al. (2008).graphic file with name e-67-o1619-scheme1.jpg

Experimental

Crystal data

  • C14H14F3NO4

  • M r = 317.26

  • Monoclinic, Inline graphic

  • a = 9.6277 (4) Å

  • b = 15.9760 (6) Å

  • c = 9.9738 (4) Å

  • β = 109.314 (5)°

  • V = 1447.75 (10) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.15 mm−1

  • T = 293 K

  • 0.55 × 0.45 × 0.40 mm

Data collection

  • Oxford Diffraction Xcalibur Ruby CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) T min = 0.782, T max = 1.000

  • 5738 measured reflections

  • 2911 independent reflections

  • 2319 reflections with I > 2σ(I)

  • R int = 0.018

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040

  • wR(F 2) = 0.116

  • S = 1.06

  • 2911 reflections

  • 234 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.14 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811021489/pk2322sup1.cif

e-67-o1619-sup1.cif (19.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811021489/pk2322Isup2.hkl

e-67-o1619-Isup2.hkl (142.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811021489/pk2322Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2i 0.86 (2) 2.11 (2) 2.9166 (18) 156.8 (18)
O2—H2B⋯O3ii 0.80 (2) 2.03 (2) 2.7798 (17) 156 (2)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

This work was supported by the Grant of Fundamental Research of the Center of Science and Technology, Republic of Uzbekistan (grant No. F3-142).

supplementary crystallographic information

Comment

3,3,3-Trifluoropyruvates have been used as efficient fluorinated building blocks in the synthesis of some biologically active trifluoromethylated compounds owing to the unique properties of the trifluoromethyl group, such as high electronegativity, electron density, steric hindrance and its hydrophobic character. The incorporation of a tertiary α-trifluoromethyl alcohol stereocenter (CF3C*(OH)R1R2) into heterocycles could provide novel drug candidates with unusual biological activities as a result of the presence of the chiral tertiary α-trifluoromethyl alcohol functionality (Nakamura et al. 2008, Abid et al., 2008).

In this study we synthesized the 3,3,3-trifluoropyruvate derivative of indole, which is an analogue of indole alkaloids. The molecular structure is shown in Fig. 1.

The compound crystallizes as a racemate and the carboxy- and hydroxy- groups are syn to each other (torsion angle O2—C9—C10—O3 = 8.1 (2)°. The 3,3,3-trifluoropyruvate fragment is non-coplanar to the plane of the indole [torsion angles C8—C7—C9—C10, C6—C7—C9—C10, C6—C7—C9—O2, C8—C7—C9—O2 are 107.3 (2)°, -69.7 (2)°, 50.0 (2)°, and -133.0 (2)°, respectively)]. The methoxy-, hydroxy- and trifluoromethyl groups deviate from the indole plane by 0.061 (2), 0.854 (1) and 0.165 (2) Å, respectively. The bond distances C—C and C—N in the indole group are in the range 1.369–1.435 Å and 1.358–1.379 Å, respectively. Due to the concurrent influence of electron-withdrawing groups in the 3,3,3-trifluoropyruvate fragment, the EtO(O)C—C(O)CF3 bond is elongated slightly to 1.554 (2) Å.

The fluorine does not readily accept hydrogen bonds and hence behaves differently from chlorine and bromine, but a signifcant number of compounds pack via weak interactions involving organic fluorine (Choudhury et al., 2004) and generate different packing motifs via F···F, C—H···F and C—F···π interactions. In the presence of a strong acceptor such as C=O, the C—H···O interaction takes priority over C—H···F. The molecules form inversion-related dimers via pairs of intermolecular O—H···O hydrogen bonds. These dimers are connected by intermolecular N—H···O═C(CF3) hydrogen bonds to form a two-dimensional network structure.

Experimental

A solution of 0.170 g (0.001 mol) of ethyl 3,3,3-trifluoropyruvate in 10 ml of ether was added to a solution of 0.147 g (0.001 mol) of 5-methoxyindole in 10 ml ether, and stirred at room temperature for 24 h. The reaction was monitored by TLC. The reaction mixture was then evaporated under reduced pressure and the residue was purified by chromatography on silica gel (chloroform/ethylacetate=9:1); yield: 0.150 g (47%). The compound was crystallized from ethanolic solution by slow evaporation, giving colorless prism crystals suitable for X-ray diffraction analysis. 1H NMR (300 MHz, dmso-d6): δ 1.11 (3H, t, CH3); 4.22 (2H, q, CH2, JCH3—CH2 7,2 Hz); 3.72 (3H, s, O—CH3), 6.78 (1H, d, aromatic, J6–5 = 6.9 Hz), 7.17 (1H, s, aromatic), 7.32 (1H, d, aromatic), 7.37 (2H, s. br., OH, CH), 11.58 (1H, s. br., NH); 19F NMR (dmso-d6): 3.01 (s, CF3); MS (m/z 317).

Refinement

Hydrogen atoms of the NH, OH and hydrogens attached to carbon (except CMe) were located in difference Fourier maps and fully refined (including Uiso). Methyl hydrogens were included using a riding model with Uiso(H) values of 1.5 Ueq(CMe).

Figures

Fig. 1.

Fig. 1.

A displacement ellipsoid plot drawn at the 50% probability level with H atoms shown as small spheres of arbitary radius.

Fig. 2.

Fig. 2.

A view of the crystal structure packing, showing part of the hydrogen bonding network.

Crystal data

C14H14F3NO4 F(000) = 656
Mr = 317.26 Dx = 1.456 Mg m3
Monoclinic, P21/n Cu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2yn Cell parameters from 2319 reflections
a = 9.6277 (4) Å θ = 5.5–75.5°
b = 15.9760 (6) Å µ = 1.15 mm1
c = 9.9738 (4) Å T = 293 K
β = 109.314 (5)° Block, colourless
V = 1447.75 (10) Å3 0.55 × 0.45 × 0.40 mm
Z = 4

Data collection

Oxford Diffraction Xcalibur Ruby CCD diffractometer 2911 independent reflections
Radiation source: fine-focus sealed tube 2319 reflections with I > 2σ(I)
graphite Rint = 0.018
Detector resolution: 10.2576 pixels mm-1 θmax = 75.9°, θmin = 5.5°
ω scans h = −11→12
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) k = −19→13
Tmin = 0.782, Tmax = 1.000 l = −12→12
5738 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.116 w = 1/[σ2(Fo2) + (0.0607P)2 + 0.1918P] where P = (Fo2 + 2Fc2)/3
S = 1.06 (Δ/σ)max < 0.001
2911 reflections Δρmax = 0.20 e Å3
234 parameters Δρmin = −0.14 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0092 (10)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
F1 0.24919 (15) 0.21987 (8) 0.04081 (14) 0.0900 (4)
F2 0.24512 (15) 0.09413 (9) −0.03770 (13) 0.0863 (4)
F3 0.42514 (12) 0.13538 (8) 0.14198 (14) 0.0805 (4)
O1 −0.16538 (14) 0.08409 (10) 0.51949 (16) 0.0773 (4)
O2 0.04297 (12) 0.12631 (7) 0.09810 (13) 0.0566 (3)
O3 0.12118 (13) −0.03385 (7) 0.13702 (13) 0.0622 (3)
O4 0.34902 (11) −0.00327 (7) 0.27903 (12) 0.0535 (3)
N1 0.34543 (16) 0.23072 (9) 0.50886 (17) 0.0590 (4)
C1 0.22216 (17) 0.19773 (10) 0.53026 (18) 0.0524 (4)
C2 0.1720 (2) 0.20300 (11) 0.6458 (2) 0.0627 (5)
C3 0.0439 (2) 0.16245 (13) 0.6367 (2) 0.0658 (5)
C4 −0.03659 (18) 0.11812 (11) 0.5139 (2) 0.0596 (4)
C5 0.01333 (17) 0.11079 (10) 0.40028 (19) 0.0528 (4)
C6 0.14673 (16) 0.15055 (9) 0.40867 (17) 0.0476 (4)
C7 0.23112 (16) 0.15638 (9) 0.31430 (17) 0.0479 (4)
C8 0.34965 (18) 0.20619 (10) 0.3800 (2) 0.0556 (4)
C9 0.19239 (16) 0.11127 (9) 0.17494 (17) 0.0475 (4)
C10 0.21565 (15) 0.01523 (9) 0.19510 (16) 0.0461 (4)
C11 0.3900 (2) −0.09195 (11) 0.2897 (2) 0.0639 (5)
C12 0.4403 (3) −0.11618 (14) 0.1696 (3) 0.0826 (6)
H12A 0.4697 −0.1739 0.1794 0.124*
H12B 0.5223 −0.0818 0.1702 0.124*
H12C 0.3613 −0.1085 0.0817 0.124*
C13 0.2798 (2) 0.14066 (12) 0.0805 (2) 0.0645 (5)
C14 −0.2605 (2) 0.04673 (16) 0.3932 (2) 0.0810 (6)
H14A −0.3506 0.0303 0.4073 0.122*
H14B −0.2137 −0.0017 0.3703 0.122*
H14C −0.2815 0.0863 0.3166 0.122*
H1A 0.403 (2) 0.2684 (13) 0.559 (2) 0.066 (6)*
H2A 0.222 (2) 0.2317 (15) 0.724 (2) 0.079 (6)*
H2B 0.009 (2) 0.0882 (16) 0.045 (2) 0.079 (7)*
H3A 0.007 (2) 0.1646 (14) 0.715 (2) 0.075 (6)*
H5A −0.0408 (19) 0.0778 (12) 0.3176 (19) 0.056 (5)*
H8A 0.430 (2) 0.2217 (12) 0.3467 (19) 0.059 (5)*
H11A 0.304 (2) −0.1242 (13) 0.292 (2) 0.068 (6)*
H11B 0.473 (3) −0.0959 (14) 0.378 (2) 0.079 (6)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
F1 0.1020 (9) 0.0653 (7) 0.0962 (9) −0.0066 (6) 0.0240 (7) 0.0318 (6)
F2 0.0997 (9) 0.0956 (10) 0.0691 (7) −0.0147 (7) 0.0352 (6) −0.0033 (6)
F3 0.0560 (6) 0.0923 (9) 0.0963 (8) −0.0088 (6) 0.0292 (6) 0.0143 (7)
O1 0.0549 (7) 0.0862 (10) 0.0964 (10) −0.0112 (7) 0.0323 (7) −0.0175 (8)
O2 0.0429 (6) 0.0470 (6) 0.0639 (7) 0.0081 (5) −0.0037 (5) −0.0038 (6)
O3 0.0518 (6) 0.0471 (6) 0.0710 (7) −0.0071 (5) −0.0022 (5) 0.0011 (5)
O4 0.0387 (5) 0.0429 (6) 0.0696 (7) 0.0059 (4) 0.0053 (5) 0.0037 (5)
N1 0.0492 (7) 0.0435 (7) 0.0687 (9) −0.0106 (6) −0.0014 (7) −0.0051 (6)
C1 0.0448 (8) 0.0369 (7) 0.0645 (10) 0.0019 (6) 0.0032 (7) −0.0040 (7)
C2 0.0611 (10) 0.0519 (10) 0.0645 (11) 0.0052 (8) 0.0066 (9) −0.0157 (8)
C3 0.0611 (10) 0.0628 (11) 0.0724 (12) 0.0074 (9) 0.0204 (9) −0.0139 (9)
C4 0.0469 (8) 0.0525 (9) 0.0774 (11) 0.0031 (7) 0.0179 (8) −0.0085 (8)
C5 0.0420 (8) 0.0442 (8) 0.0648 (10) −0.0021 (6) 0.0076 (7) −0.0100 (7)
C6 0.0408 (7) 0.0331 (7) 0.0600 (9) 0.0026 (6) 0.0049 (6) −0.0033 (6)
C7 0.0404 (7) 0.0358 (7) 0.0594 (9) 0.0005 (6) 0.0055 (6) 0.0032 (6)
C8 0.0437 (8) 0.0459 (9) 0.0673 (10) −0.0053 (7) 0.0050 (7) 0.0068 (7)
C9 0.0365 (7) 0.0415 (8) 0.0563 (9) 0.0015 (6) 0.0042 (6) 0.0038 (6)
C10 0.0390 (7) 0.0426 (8) 0.0515 (8) 0.0001 (6) 0.0079 (6) 0.0010 (6)
C11 0.0521 (9) 0.0459 (9) 0.0860 (13) 0.0096 (8) 0.0125 (9) 0.0074 (9)
C12 0.0726 (13) 0.0660 (12) 0.1059 (17) 0.0106 (10) 0.0249 (12) −0.0157 (12)
C13 0.0636 (10) 0.0580 (10) 0.0664 (11) −0.0046 (8) 0.0139 (8) 0.0111 (9)
C14 0.0487 (10) 0.0883 (15) 0.1008 (16) −0.0144 (10) 0.0176 (10) −0.0043 (12)

Geometric parameters (Å, °)

F1—C13 1.330 (2) C4—C5 1.375 (3)
F2—C13 1.339 (2) C5—C6 1.410 (2)
F3—C13 1.332 (2) C5—H5A 0.972 (18)
O1—C4 1.372 (2) C6—C7 1.436 (2)
O1—C14 1.421 (3) C7—C8 1.367 (2)
O2—C9 1.4090 (17) C7—C9 1.499 (2)
O2—H2B 0.80 (2) C8—H8A 0.974 (18)
O3—C10 1.1954 (18) C9—C13 1.530 (3)
O4—C10 1.3137 (17) C9—C10 1.554 (2)
O4—C11 1.465 (2) C11—C12 1.484 (3)
N1—C8 1.357 (2) C11—H11A 0.98 (2)
N1—C1 1.378 (2) C11—H11B 0.98 (2)
N1—H1A 0.86 (2) C12—H12A 0.9600
C1—C2 1.391 (3) C12—H12B 0.9600
C1—C6 1.408 (2) C12—H12C 0.9600
C2—C3 1.369 (3) C14—H14A 0.9600
C2—H2A 0.90 (2) C14—H14B 0.9600
C3—C4 1.405 (3) C14—H14C 0.9600
C3—H3A 0.97 (2)
C4—O1—C14 117.18 (16) C7—C9—C13 113.86 (13)
C9—O2—H2B 110.4 (17) O2—C9—C10 108.44 (12)
C10—O4—C11 116.54 (13) C7—C9—C10 111.95 (13)
C8—N1—C1 109.48 (14) C13—C9—C10 107.31 (14)
C8—N1—H1A 122.4 (13) O3—C10—O4 126.01 (14)
C1—N1—H1A 127.1 (13) O3—C10—C9 122.07 (13)
N1—C1—C2 131.13 (16) O4—C10—C9 111.91 (12)
N1—C1—C6 107.25 (16) O4—C11—C12 110.23 (17)
C2—C1—C6 121.60 (16) O4—C11—H11A 107.4 (12)
C3—C2—C1 117.93 (17) C12—C11—H11A 112.8 (12)
C3—C2—H2A 120.9 (14) O4—C11—H11B 104.3 (13)
C1—C2—H2A 121.2 (14) C12—C11—H11B 109.3 (13)
C2—C3—C4 121.43 (19) H11A—C11—H11B 112.5 (17)
C2—C3—H3A 119.9 (13) C11—C12—H12A 109.5
C4—C3—H3A 118.6 (13) C11—C12—H12B 109.5
O1—C4—C5 124.53 (16) H12A—C12—H12B 109.5
O1—C4—C3 114.21 (18) C11—C12—H12C 109.5
C5—C4—C3 121.26 (17) H12A—C12—H12C 109.5
C4—C5—C6 118.20 (15) H12B—C12—H12C 109.5
C4—C5—H5A 120.7 (11) F1—C13—F3 107.05 (16)
C6—C5—H5A 121.1 (11) F1—C13—F2 107.46 (16)
C1—C6—C5 119.49 (16) F3—C13—F2 106.77 (17)
C1—C6—C7 106.70 (14) F1—C13—C9 111.24 (17)
C5—C6—C7 133.81 (15) F3—C13—C9 113.91 (15)
C8—C7—C6 106.71 (15) F2—C13—C9 110.11 (15)
C8—C7—C9 129.49 (16) O1—C14—H14A 109.5
C6—C7—C9 123.74 (13) O1—C14—H14B 109.5
N1—C8—C7 109.86 (16) H14A—C14—H14B 109.5
N1—C8—H8A 121.8 (11) O1—C14—H14C 109.5
C7—C8—H8A 128.3 (11) H14A—C14—H14C 109.5
O2—C9—C7 108.57 (13) H14B—C14—H14C 109.5
O2—C9—C13 106.46 (13)
C8—N1—C1—C2 178.10 (17) C8—C7—C9—O2 −133.00 (17)
C8—N1—C1—C6 0.03 (18) C6—C7—C9—O2 50.01 (18)
N1—C1—C2—C3 −179.49 (18) C8—C7—C9—C13 −14.6 (2)
C6—C1—C2—C3 −1.7 (3) C6—C7—C9—C13 168.40 (14)
C1—C2—C3—C4 −1.2 (3) C8—C7—C9—C10 107.32 (18)
C14—O1—C4—C5 −7.2 (3) C6—C7—C9—C10 −69.67 (18)
C14—O1—C4—C3 172.94 (18) C11—O4—C10—O3 7.0 (3)
C2—C3—C4—O1 −177.34 (18) C11—O4—C10—C9 −171.67 (15)
C2—C3—C4—C5 2.8 (3) O2—C9—C10—O3 8.1 (2)
O1—C4—C5—C6 178.83 (16) C7—C9—C10—O3 127.84 (17)
C3—C4—C5—C6 −1.3 (3) C13—C9—C10—O3 −106.54 (18)
N1—C1—C6—C5 −178.63 (14) O2—C9—C10—O4 −173.15 (13)
C2—C1—C6—C5 3.1 (2) C7—C9—C10—O4 −53.40 (18)
N1—C1—C6—C7 0.41 (17) C13—C9—C10—O4 72.22 (17)
C2—C1—C6—C7 −177.88 (14) C10—O4—C11—C12 83.2 (2)
C4—C5—C6—C1 −1.5 (2) O2—C9—C13—F1 54.98 (18)
C4—C5—C6—C7 179.74 (16) C7—C9—C13—F1 −64.61 (19)
C1—C6—C7—C8 −0.69 (17) C10—C9—C13—F1 170.92 (14)
C5—C6—C7—C8 178.15 (17) O2—C9—C13—F3 176.06 (15)
C1—C6—C7—C9 176.89 (13) C7—C9—C13—F3 56.5 (2)
C5—C6—C7—C9 −4.3 (3) C10—C9—C13—F3 −67.99 (19)
C1—N1—C8—C7 −0.48 (19) O2—C9—C13—F2 −64.04 (18)
C6—C7—C8—N1 0.73 (18) C7—C9—C13—F2 176.37 (13)
C9—C7—C8—N1 −176.66 (14) C10—C9—C13—F2 51.91 (18)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1A···O2i 0.86 (2) 2.11 (2) 2.9166 (18) 156.8 (18)
O2—H2B···O3ii 0.80 (2) 2.03 (2) 2.7798 (17) 156 (2)

Symmetry codes: (i) x+1/2, −y+1/2, z+1/2; (ii) −x, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2322).

References

  1. Abid, M., Teixeira, L. & Torok, B. (2008). Org. Lett 10, 933–935. [DOI] [PubMed]
  2. Choudhury, A. R., Nagarajan, K. & Guru Row, T. N. (2004). Acta Cryst. C60, o644–o647. [DOI] [PubMed]
  3. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  4. Nakamura, Sh., Hyodo, K., Nakamura, Yu., Shibata, N. & Toru, T. (2008). Adv. Synth. Catal. 350, 1443–1448.
  5. Oxford Diffraction (2009). CrysAlis PRO Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811021489/pk2322sup1.cif

e-67-o1619-sup1.cif (19.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811021489/pk2322Isup2.hkl

e-67-o1619-Isup2.hkl (142.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811021489/pk2322Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES