Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Jun 11;67(Pt 7):o1597. doi: 10.1107/S1600536811020629

2-(4-Chloro­phen­yl)-2-oxoethyl 3-(trifluoro­meth­yl)benzoate

Hoong-Kun Fun a,*,, Wan-Sin Loh a,§, B Garudachari b, Arun M Isloor b, M N Satyanarayan c
PMCID: PMC3152104  PMID: 21837005

Abstract

In the title compound, C16H10ClF3O3, the two benzene rings are slightly twisted from each other, with a dihedral angle of 15.50 (8)° between the planes. In the crystal, inter­molecular C—H⋯O hydrogen bonds link the mol­ecules into a layer parallel to the bc plane.

Related literature

For the background and applications of phenacyl benzoates, see: Sheehan & Umezaw (1973); Ruzicka et al. (2002); Litera et al. (2006); Rather & Reid (1919); Huang et al. (1996); Gandhi et al. (1995). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).graphic file with name e-67-o1597-scheme1.jpg

Experimental

Crystal data

  • C16H10ClF3O3

  • M r = 342.69

  • Monoclinic, Inline graphic

  • a = 14.3036 (7) Å

  • b = 12.1335 (6) Å

  • c = 8.5464 (4) Å

  • β = 101.444 (1)°

  • V = 1453.76 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 100 K

  • 0.28 × 0.16 × 0.11 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.919, T max = 0.966

  • 15629 measured reflections

  • 3822 independent reflections

  • 2963 reflections with I > 2σ(I)

  • R int = 0.046

Refinement

  • R[F 2 > 2σ(F 2)] = 0.048

  • wR(F 2) = 0.121

  • S = 1.04

  • 3822 reflections

  • 208 parameters

  • H-atom parameters constrained

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.33 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811020629/is2720sup1.cif

e-67-o1597-sup1.cif (18.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811020629/is2720Isup2.hkl

e-67-o1597-Isup2.hkl (187.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811020629/is2720Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯O1i 0.95 2.53 3.205 (2) 128
C4—H4A⋯O3ii 0.95 2.53 3.289 (2) 137
C8—H8A⋯O3iii 0.99 2.48 3.474 (2) 177

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

H-KF and W-SL thank Universiti Sains Malaysia (USM) for a Research University Grant (No. 1001/PFIZIK/811160). W-SL also thanks the Malaysian government and USM for the award of a Research Fellowship. AMI is thankful to the Department of Atomic Energy, Board for Research in Nuclear Sciences, Government of India, for a ‘Young Scientist’ award. BG thanks the Department of Information Technology, New Delhi, India, for the financial support.

supplementary crystallographic information

Comment

Phenacyl benzoates derivatives are very important in identification of organic acids (Rather & Reid, 1919), they undergo photolysis in neutral and mild conditions (Sheehan & Umezaw, 1973; Ruzicka et al., 2002; Litera et al., 2006). They find applications in the field of synthetic chemistry for the synthesis of oxazoles, imidazoles (Huang et al., 1996), benzoxazepine (Gandhi et al., 1995). We hereby report the crystal structure of 2-(4-chlorophenyl)-2-oxoethyl 3-(trifluoromethyl) benzoate of potential commercial importance.

In the title compound (Fig. 1), the chlorophenyl (C1–C6/CL1) group is slightly twisted away from the benzene ring (C10–C15) with a dihedral angle of 15.50 (8)°. Bond lengths (Allen et al., 1987) and angles are within the normal ranges.

In the crystal packing (Fig. 2), intermolecular C1—H1A···O1i, C4—H4A···O3ii and C8—H8A···O3iii hydrogen bonds (Table 1) link the molecules into a layer parallel to the bc plane.

Experimental

A mixture of 3-(trifluoromethyl)benzoic acid (1.0 g, 0.0052 mol), potassium carbonate (0.80 g, 0.0057 mol) and 2-bromo-1-(4-chlorophenyl)ethanone (1.21 g, 0.0052 mol) in dimethylformamide (10 ml) was stirred at room temperature for 2 h. On cooling, colourless needle-shaped crystals, 2-(4-chlorophenyl)-2-oxoethyl 3-(trifluoromethyl)benzoate begin to separate. It was collected by filtration and recrystallized from ethanol. Yield: 1.60 g, 88.88%, m.p.: 387–388 K.

Refinement

All the H atoms were positioned geometrically (C—H = 0.95 or 0.99 Å) and refined with a riding model, with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.

Fig. 2.

Fig. 2.

The crystal packing of the title compound, viewed along the b axis. H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.

Crystal data

C16H10ClF3O3 F(000) = 696
Mr = 342.69 Dx = 1.566 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 3750 reflections
a = 14.3036 (7) Å θ = 2.9–29.9°
b = 12.1335 (6) Å µ = 0.31 mm1
c = 8.5464 (4) Å T = 100 K
β = 101.444 (1)° Block, colourless
V = 1453.76 (12) Å3 0.28 × 0.16 × 0.11 mm
Z = 4

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 3822 independent reflections
Radiation source: fine-focus sealed tube 2963 reflections with I > 2σ(I)
graphite Rint = 0.046
φ and ω scans θmax = 29.0°, θmin = 1.5°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −19→19
Tmin = 0.919, Tmax = 0.966 k = −10→16
15629 measured reflections l = −11→11

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0486P)2 + 1.0347P] where P = (Fo2 + 2Fc2)/3
3822 reflections (Δ/σ)max = 0.001
208 parameters Δρmax = 0.52 e Å3
0 restraints Δρmin = −0.33 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.22643 (4) 0.86068 (4) 1.07291 (6) 0.02896 (14)
F1 0.92991 (14) 0.87892 (13) 0.01853 (17) 0.0580 (5)
F2 1.04777 (11) 0.85923 (17) 0.2147 (2) 0.0727 (6)
F3 0.93614 (10) 0.73951 (11) 0.17107 (16) 0.0371 (3)
O1 0.53911 (10) 1.07226 (11) 0.66621 (15) 0.0222 (3)
O2 0.66428 (9) 0.93394 (11) 0.59360 (15) 0.0214 (3)
O3 0.69311 (10) 0.76708 (11) 0.49795 (17) 0.0260 (3)
C1 0.43295 (14) 0.83441 (15) 0.8232 (2) 0.0202 (4)
H1A 0.4678 0.7774 0.7845 0.024*
C2 0.36390 (14) 0.80774 (16) 0.9092 (2) 0.0225 (4)
H2A 0.3509 0.7329 0.9297 0.027*
C3 0.31378 (14) 0.89225 (16) 0.9650 (2) 0.0207 (4)
C4 0.33093 (13) 1.00257 (16) 0.9356 (2) 0.0202 (4)
H4A 0.2957 1.0593 0.9742 0.024*
C5 0.39992 (13) 1.02787 (15) 0.8495 (2) 0.0191 (4)
H5A 0.4122 1.1028 0.8285 0.023*
C6 0.45214 (13) 0.94487 (15) 0.7924 (2) 0.0171 (4)
C7 0.52797 (13) 0.97681 (15) 0.7041 (2) 0.0182 (4)
C8 0.59082 (14) 0.88503 (15) 0.6632 (2) 0.0199 (4)
H8A 0.6195 0.8437 0.7609 0.024*
H8B 0.5526 0.8332 0.5868 0.024*
C9 0.71079 (13) 0.86489 (15) 0.5125 (2) 0.0190 (4)
C10 0.78492 (13) 0.92229 (15) 0.4433 (2) 0.0185 (4)
C11 0.80562 (14) 1.03401 (16) 0.4691 (2) 0.0219 (4)
H11A 0.7732 1.0758 0.5358 0.026*
C12 0.87340 (15) 1.08395 (17) 0.3975 (3) 0.0276 (4)
H12A 0.8872 1.1601 0.4149 0.033*
C13 0.92112 (15) 1.02351 (17) 0.3007 (2) 0.0264 (4)
H13A 0.9673 1.0580 0.2511 0.032*
C14 0.90109 (14) 0.91177 (17) 0.2764 (2) 0.0228 (4)
C15 0.83340 (13) 0.86101 (16) 0.3467 (2) 0.0198 (4)
H15A 0.8200 0.7848 0.3292 0.024*
C16 0.95338 (16) 0.84786 (19) 0.1713 (3) 0.0314 (5)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0281 (3) 0.0281 (3) 0.0351 (3) −0.0017 (2) 0.0170 (2) 0.0031 (2)
F1 0.1082 (15) 0.0398 (9) 0.0358 (8) 0.0034 (9) 0.0380 (9) −0.0024 (6)
F2 0.0272 (8) 0.0992 (15) 0.0989 (14) −0.0158 (8) 0.0301 (8) −0.0676 (12)
F3 0.0439 (8) 0.0256 (7) 0.0466 (8) 0.0074 (6) 0.0204 (6) −0.0064 (6)
O1 0.0289 (7) 0.0134 (6) 0.0255 (6) −0.0011 (5) 0.0082 (6) 0.0029 (5)
O2 0.0242 (7) 0.0165 (6) 0.0263 (6) −0.0022 (5) 0.0121 (5) −0.0020 (5)
O3 0.0311 (8) 0.0137 (6) 0.0362 (8) −0.0031 (6) 0.0140 (6) −0.0030 (6)
C1 0.0241 (9) 0.0131 (9) 0.0243 (9) 0.0023 (7) 0.0070 (7) 0.0001 (7)
C2 0.0257 (10) 0.0162 (9) 0.0272 (9) 0.0001 (7) 0.0088 (8) 0.0023 (7)
C3 0.0212 (9) 0.0214 (9) 0.0210 (8) −0.0017 (7) 0.0078 (7) 0.0011 (7)
C4 0.0214 (9) 0.0167 (9) 0.0219 (8) 0.0035 (7) 0.0030 (7) −0.0010 (7)
C5 0.0224 (9) 0.0140 (8) 0.0199 (8) 0.0012 (7) 0.0020 (7) 0.0013 (7)
C6 0.0200 (9) 0.0140 (8) 0.0175 (7) −0.0005 (7) 0.0039 (6) 0.0007 (7)
C7 0.0212 (9) 0.0153 (8) 0.0173 (8) −0.0007 (7) 0.0021 (7) 0.0010 (7)
C8 0.0232 (9) 0.0152 (9) 0.0225 (8) −0.0007 (7) 0.0074 (7) 0.0011 (7)
C9 0.0203 (9) 0.0170 (9) 0.0200 (8) 0.0011 (7) 0.0046 (7) −0.0008 (7)
C10 0.0186 (9) 0.0156 (9) 0.0214 (8) 0.0003 (7) 0.0038 (7) 0.0018 (7)
C11 0.0227 (9) 0.0175 (9) 0.0268 (9) 0.0015 (7) 0.0078 (7) −0.0019 (7)
C12 0.0265 (10) 0.0168 (10) 0.0413 (11) −0.0027 (8) 0.0112 (9) −0.0028 (8)
C13 0.0249 (10) 0.0237 (10) 0.0323 (10) −0.0034 (8) 0.0100 (8) 0.0020 (8)
C14 0.0210 (9) 0.0238 (10) 0.0246 (9) 0.0010 (8) 0.0068 (7) −0.0039 (8)
C15 0.0216 (9) 0.0161 (9) 0.0219 (8) 0.0000 (7) 0.0043 (7) −0.0014 (7)
C16 0.0298 (11) 0.0325 (12) 0.0356 (11) −0.0061 (9) 0.0155 (9) −0.0119 (9)

Geometric parameters (Å, °)

Cl1—C3 1.7364 (19) C5—H5A 0.9500
F1—C16 1.336 (3) C6—C7 1.490 (3)
F2—C16 1.335 (3) C7—C8 1.515 (3)
F3—C16 1.338 (3) C8—H8A 0.9900
O1—C7 1.222 (2) C8—H8B 0.9900
O2—C9 1.344 (2) C9—C10 1.486 (3)
O2—C8 1.435 (2) C10—C15 1.394 (3)
O3—C9 1.215 (2) C10—C11 1.396 (3)
C1—C2 1.381 (3) C11—C12 1.385 (3)
C1—C6 1.403 (3) C11—H11A 0.9500
C1—H1A 0.9500 C12—C13 1.383 (3)
C2—C3 1.389 (3) C12—H12A 0.9500
C2—H2A 0.9500 C13—C14 1.393 (3)
C3—C4 1.393 (3) C13—H13A 0.9500
C4—C5 1.378 (3) C14—C15 1.381 (3)
C4—H4A 0.9500 C14—C16 1.495 (3)
C5—C6 1.398 (3) C15—H15A 0.9500
C9—O2—C8 115.72 (14) O3—C9—O2 123.20 (17)
C2—C1—C6 120.70 (17) O3—C9—C10 124.57 (17)
C2—C1—H1A 119.6 O2—C9—C10 112.22 (16)
C6—C1—H1A 119.6 C15—C10—C11 119.79 (17)
C1—C2—C3 118.83 (18) C15—C10—C9 117.65 (17)
C1—C2—H2A 120.6 C11—C10—C9 122.55 (17)
C3—C2—H2A 120.6 C12—C11—C10 120.03 (18)
C2—C3—C4 121.75 (18) C12—C11—H11A 120.0
C2—C3—Cl1 119.64 (15) C10—C11—H11A 120.0
C4—C3—Cl1 118.61 (15) C13—C12—C11 120.28 (19)
C5—C4—C3 118.75 (17) C13—C12—H12A 119.9
C5—C4—H4A 120.6 C11—C12—H12A 119.9
C3—C4—H4A 120.6 C12—C13—C14 119.61 (19)
C4—C5—C6 120.98 (17) C12—C13—H13A 120.2
C4—C5—H5A 119.5 C14—C13—H13A 120.2
C6—C5—H5A 119.5 C15—C14—C13 120.71 (18)
C5—C6—C1 118.99 (17) C15—C14—C16 120.48 (19)
C5—C6—C7 118.83 (16) C13—C14—C16 118.80 (18)
C1—C6—C7 122.16 (16) C14—C15—C10 119.58 (18)
O1—C7—C6 121.81 (17) C14—C15—H15A 120.2
O1—C7—C8 121.41 (17) C10—C15—H15A 120.2
C6—C7—C8 116.78 (15) F2—C16—F1 106.7 (2)
O2—C8—C7 107.97 (14) F2—C16—F3 106.1 (2)
O2—C8—H8A 110.1 F1—C16—F3 105.40 (17)
C7—C8—H8A 110.1 F2—C16—C14 112.24 (17)
O2—C8—H8B 110.1 F1—C16—C14 112.5 (2)
C7—C8—H8B 110.1 F3—C16—C14 113.35 (18)
H8A—C8—H8B 108.4
C6—C1—C2—C3 −0.1 (3) O2—C9—C10—C15 −175.47 (15)
C1—C2—C3—C4 0.5 (3) O3—C9—C10—C11 −177.10 (18)
C1—C2—C3—Cl1 179.84 (15) O2—C9—C10—C11 3.2 (2)
C2—C3—C4—C5 −0.4 (3) C15—C10—C11—C12 0.7 (3)
Cl1—C3—C4—C5 −179.73 (14) C9—C10—C11—C12 −178.00 (18)
C3—C4—C5—C6 −0.1 (3) C10—C11—C12—C13 −0.2 (3)
C4—C5—C6—C1 0.4 (3) C11—C12—C13—C14 −0.4 (3)
C4—C5—C6—C7 −178.17 (16) C12—C13—C14—C15 0.7 (3)
C2—C1—C6—C5 −0.3 (3) C12—C13—C14—C16 179.9 (2)
C2—C1—C6—C7 178.24 (17) C13—C14—C15—C10 −0.2 (3)
C5—C6—C7—O1 −7.6 (2) C16—C14—C15—C10 −179.49 (17)
C1—C6—C7—O1 173.85 (17) C11—C10—C15—C14 −0.4 (3)
C5—C6—C7—C8 172.43 (16) C9—C10—C15—C14 178.31 (16)
C1—C6—C7—C8 −6.1 (2) C15—C14—C16—F2 −128.0 (2)
C9—O2—C8—C7 −163.11 (14) C13—C14—C16—F2 52.7 (3)
O1—C7—C8—O2 5.7 (2) C15—C14—C16—F1 111.7 (2)
C6—C7—C8—O2 −174.34 (14) C13—C14—C16—F1 −67.6 (2)
C8—O2—C9—O3 −0.2 (3) C15—C14—C16—F3 −7.8 (3)
C8—O2—C9—C10 179.50 (14) C13—C14—C16—F3 172.98 (18)
O3—C9—C10—C15 4.2 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C1—H1A···O1i 0.95 2.53 3.205 (2) 128.
C4—H4A···O3ii 0.95 2.53 3.289 (2) 137.
C8—H8A···O3iii 0.99 2.48 3.474 (2) 177.

Symmetry codes: (i) −x+1, y−1/2, −z+3/2; (ii) −x+1, y+1/2, −z+3/2; (iii) x, −y+3/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2720).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.
  4. Gandhi, S. S., Bell, K. L. & Gibson, M. S. (1995). Tetrahedron, 51, 13301–13308.
  5. Huang, W., Pian, J., Chen, B., Pei, W. & Ye, X. (1996). Tetrahedron, 52, 10131–10136.
  6. Litera, J. K., Loya, A. D. & Klan, P. (2006). J. Org. Chem. 71, 713–723. [DOI] [PubMed]
  7. Rather, J. B. & Reid, E. (1919). J. Am. Chem. Soc. 41, 75–83.
  8. Ruzicka, R., Zabadal, M. & Klan, P. (2002). Synth. Commun. 32, 2581–2590.
  9. Sheehan, J. C. & Umezaw, K. (1973). J. Org. Chem. 58, 3771–3773.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811020629/is2720sup1.cif

e-67-o1597-sup1.cif (18.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811020629/is2720Isup2.hkl

e-67-o1597-Isup2.hkl (187.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811020629/is2720Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES