Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Jun 25;67(Pt 7):o1801. doi: 10.1107/S1600536811023592

Second monoclinic modification of cyclo­hexane-1,1-dicarbonitrile

Nurlana D Sadikhova a, Ali N Khalilov a, Atash V Gurbanov a, Iván Brito b,*
PMCID: PMC3152107  PMID: 21837174

Abstract

In the title compound, C8H10N2, the cyclo­hexane ring adopts a chair conformation. he crystal structure of the previously reported monoclinic modification have intramolecular CN⋯CN and C—H⋯N interactions. These types of interaction are not present in this new modification whose crystal structure is built up by van der Waals interactions.

Related literature

For the previously reported monoclinic modification, see: Echeverria et al. (1995). For synthetic methods, see: Tsai et al. (2003); Suissa et al. (1977); Julia & Maumy (1969). For puckering parameters see: Cremer & Pople (1975).graphic file with name e-67-o1801-scheme1.jpg

Experimental

Crystal data

  • C8H10N2

  • M r = 134.18

  • Monoclinic, Inline graphic

  • a = 8.9300 (5) Å

  • b = 8.3656 (5) Å

  • c = 9.8725 (6) Å

  • β = 92.662 (1)°

  • V = 736.73 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 100 K

  • 0.30 × 0.30 × 0.30 mm

Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001) T min = 0.978, T max = 0.978

  • 9584 measured reflections

  • 2794 independent reflections

  • 2236 reflections with I > 2σ(I)

  • R int = 0.033

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040

  • wR(F 2) = 0.105

  • S = 1.03

  • 2794 reflections

  • 91 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811023592/ng5170sup1.cif

e-67-o1801-sup1.cif (13.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811023592/ng5170Isup2.hkl

e-67-o1801-Isup2.hkl (134.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811023592/ng5170Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful to Baku State University for supporting this study. IB thanks the Spanish Research Council (CSIC) for the provision of a free-of-charge licence for the Cambridge Structural Database.

supplementary crystallographic information

Comment

Fig.1 shows the structure of title compound, (I) which is a polymorphic form of a previously reported by (Echeverria et al., 1995), (II). The bond distances and the six C—C—C bond angles in (I) are slightly longer than (II). The crystal structure of (II) have intermolecular CN···CN and C—H···N interactions, whereas this kind of interactions are not present in (I). The values of the ring puckering parameters: QT = 0.5665 Å, θ =0.72° and φ=107.4° (Cremer & Pople, 1975), indicate that the cyclohexane has a chair conformation. The C1—C2 and C1—C6 bond distances are more longer than the other C—C distances in the cyclohexyl ring. The lengthening of these bonds with increasing ring size may be attributed to steric crowding about C1 atom. The cyano groups are essentially collinear with C1 and the N—C—C1 angles is 178.55 (10)° (mean). A σh plane passing through the CN groups and the C1 atom which bisects the cyclohexyl ring.

Experimental

A mixture of malonodinitrile (0.1 mol, 6.6 g), 23 gr 1,5-dibromopentane (0.1 mol, 23 g) and 46 gr K2CO3 in dry DMSO (50 ml), was stirred for 12 h at 70 °C. After cooling down, the reaction mixture was poured into water and extracted with ether. The organic layer was washed several times with water, dried over Na2SO4 and the solvent evaporated. The crude product was purified by vacuum distillation yielding 10.5 gr (87%) of a solid compound which after recrystallization in hexane gave white crystals: mp 65 °C.; 1H NMR (300 MHz, CDCI3) δ 1.52 (m, 2H, CH2), 1.72 (m, 4H, 2CH2), 2.12 (t, 4H,2CH2); 13CNMR (75 MHz, CDCI3) δ 22.3, 23.8, 34.7, 41.2, 117.3. Analysis, found, %: C: 71.42, H: 7.78, N: 20.63 (C8H10N2); calculated, %: C: 71.61, H: 7.51, N: 20.88

Refinement

One reflection (-7 1 3) was omitted of the refinement due to to bad agreement between observed and calculated factors. All H-atoms were placed in calculated positions [C—H = 0.99 Å, Uiso(H) = 1.2 Ueq(C)] and were included in the refinement in the riding model approximation.

Figures

Fig. 1.

Fig. 1.

The structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are plotted at the 30% probability level.

Crystal data

C8H10N2 F(000) = 288
Mr = 134.18 Dx = 1.210 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 2571 reflections
a = 8.9300 (5) Å θ = 3.0–33.1°
b = 8.3656 (5) Å µ = 0.08 mm1
c = 9.8725 (6) Å T = 100 K
β = 92.662 (1)° Prism, colourless
V = 736.73 (8) Å3 0.30 × 0.30 × 0.30 mm
Z = 4

Data collection

Bruker APEXII CCD diffractometer 2794 independent reflections
Radiation source: fine-focus sealed tube 2236 reflections with I > 2σ(I)
graphite Rint = 0.033
φ and ω scans θmax = 33.2°, θmin = 3.0°
Absorption correction: multi-scan (SADABS; Sheldrick, 2001) h = −13→13
Tmin = 0.978, Tmax = 0.978 k = −12→12
9584 measured reflections l = −15→14

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040 Hydrogen site location: difference Fourier map
wR(F2) = 0.105 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0492P)2 + 0.1357P] where P = (Fo2 + 2Fc2)/3
2794 reflections (Δ/σ)max < 0.001
91 parameters Δρmax = 0.31 e Å3
0 restraints Δρmin = −0.21 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.36573 (9) −0.12113 (9) 0.57950 (8) 0.02114 (17)
N2 −0.02890 (8) 0.15605 (9) 0.63201 (8) 0.01948 (16)
C1 0.24232 (8) 0.16105 (9) 0.53895 (8) 0.01226 (14)
C2 0.23203 (9) 0.19844 (9) 0.38467 (8) 0.01370 (15)
H2A 0.3327 0.1888 0.3476 0.016*
H2B 0.1652 0.1197 0.3376 0.016*
C3 0.17144 (9) 0.36675 (10) 0.35831 (9) 0.01563 (16)
H3A 0.0672 0.3734 0.3878 0.019*
H3B 0.1701 0.3895 0.2598 0.019*
C4 0.26762 (9) 0.49156 (9) 0.43440 (9) 0.01663 (16)
H4A 0.2237 0.5990 0.4185 0.020*
H4B 0.3697 0.4915 0.3992 0.020*
C5 0.27741 (9) 0.45676 (10) 0.58644 (8) 0.01565 (16)
H5A 0.3437 0.5367 0.6326 0.019*
H5B 0.1765 0.4671 0.6230 0.019*
C6 0.33813 (9) 0.28925 (9) 0.61680 (8) 0.01401 (15)
H6A 0.3367 0.2685 0.7155 0.017*
H6B 0.4433 0.2823 0.5898 0.017*
C7 0.30994 (9) 0.00103 (10) 0.56201 (8) 0.01494 (15)
C8 0.08948 (9) 0.15673 (9) 0.59186 (8) 0.01406 (15)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0225 (3) 0.0166 (3) 0.0245 (4) 0.0026 (3) 0.0035 (3) 0.0023 (3)
N2 0.0181 (3) 0.0193 (3) 0.0213 (4) −0.0012 (3) 0.0039 (3) −0.0003 (3)
C1 0.0127 (3) 0.0109 (3) 0.0134 (3) 0.0006 (2) 0.0021 (2) 0.0006 (2)
C2 0.0170 (3) 0.0128 (3) 0.0115 (3) −0.0012 (3) 0.0017 (3) −0.0003 (3)
C3 0.0179 (3) 0.0144 (3) 0.0145 (3) 0.0001 (3) −0.0010 (3) 0.0019 (3)
C4 0.0214 (4) 0.0116 (3) 0.0169 (4) −0.0007 (3) 0.0006 (3) 0.0011 (3)
C5 0.0188 (3) 0.0124 (3) 0.0157 (4) 0.0003 (3) 0.0003 (3) −0.0021 (3)
C6 0.0141 (3) 0.0136 (3) 0.0141 (3) −0.0002 (2) −0.0007 (3) −0.0009 (3)
C7 0.0156 (3) 0.0143 (3) 0.0152 (4) −0.0005 (3) 0.0032 (3) 0.0007 (3)
C8 0.0161 (3) 0.0125 (3) 0.0136 (3) −0.0002 (3) 0.0009 (3) 0.0004 (3)

Geometric parameters (Å, °)

N1—C7 1.1465 (11) C3—H3A 0.9900
N2—C8 1.1462 (11) C3—H3B 0.9900
C1—C7 1.4818 (11) C4—C5 1.5275 (12)
C1—C8 1.4843 (11) C4—H4A 0.9900
C1—C6 1.5530 (11) C4—H4B 0.9900
C1—C2 1.5535 (11) C5—C6 1.5272 (11)
C2—C3 1.5265 (11) C5—H5A 0.9900
C2—H2A 0.9900 C5—H5B 0.9900
C2—H2B 0.9900 C6—H6A 0.9900
C3—C4 1.5272 (11) C6—H6B 0.9900
C7—C1—C8 107.39 (6) C3—C4—H4A 109.4
C7—C1—C6 109.67 (6) C5—C4—H4A 109.4
C8—C1—C6 109.70 (6) C3—C4—H4B 109.4
C7—C1—C2 109.73 (6) C5—C4—H4B 109.4
C8—C1—C2 109.66 (6) H4A—C4—H4B 108.0
C6—C1—C2 110.63 (6) C6—C5—C4 111.80 (7)
C3—C2—C1 110.93 (6) C6—C5—H5A 109.3
C3—C2—H2A 109.5 C4—C5—H5A 109.3
C1—C2—H2A 109.5 C6—C5—H5B 109.3
C3—C2—H2B 109.5 C4—C5—H5B 109.3
C1—C2—H2B 109.5 H5A—C5—H5B 107.9
H2A—C2—H2B 108.0 C5—C6—C1 110.74 (6)
C2—C3—C4 111.10 (6) C5—C6—H6A 109.5
C2—C3—H3A 109.4 C1—C6—H6A 109.5
C4—C3—H3A 109.4 C5—C6—H6B 109.5
C2—C3—H3B 109.4 C1—C6—H6B 109.5
C4—C3—H3B 109.4 H6A—C6—H6B 108.1
H3A—C3—H3B 108.0 N1—C7—C1 178.29 (8)
C3—C4—C5 110.99 (7) N2—C8—C1 178.83 (8)
C7—C1—C2—C3 −176.59 (6) C8—C1—C6—C5 −66.44 (8)
C8—C1—C2—C3 65.69 (8) C2—C1—C6—C5 54.66 (8)
C6—C1—C2—C3 −55.45 (8) C8—C1—C7—N1 −161 (3)
C1—C2—C3—C4 56.61 (9) C6—C1—C7—N1 −42 (3)
C2—C3—C4—C5 −56.87 (9) C2—C1—C7—N1 80 (3)
C3—C4—C5—C6 56.58 (9) C7—C1—C8—N2 −179 (100)
C4—C5—C6—C1 −55.55 (9) C6—C1—C8—N2 62 (4)
C7—C1—C6—C5 175.84 (7) C2—C1—C8—N2 −60 (4)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG5170).

References

  1. Bruker (2005). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  3. Echeverria, G., Punte, G., Rivero, B. E. & Barón, M. (1995). Acta Cryst. C51, 1020–1023.
  4. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  5. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  6. Julia, M. & Maumy, M. (1969). Bull. Soc. Chim. Fr. pp. 2415–2427.
  7. Sheldrick, G. M. (2001). SADABS University of Göttingen, Germany.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Suissa, M. R., Romming, C. & Dale, J. (1977). Chem. Commun. pp. 113–114.
  10. Tsai, T.-Y., Kak-Shan Shia, K.-S. & Liu, H.-J. (2003). Synlett, pp. 97–101.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811023592/ng5170sup1.cif

e-67-o1801-sup1.cif (13.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811023592/ng5170Isup2.hkl

e-67-o1801-Isup2.hkl (134.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811023592/ng5170Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES