Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Jun 11;67(Pt 7):o1645. doi: 10.1107/S1600536811021192

Bis(guanidinium) 4,5-dichloro­phthalate monohydrate

Graham Smith a,*, Urs D Wermuth a
PMCID: PMC3152114  PMID: 21837049

Abstract

In the structure of the title hydrated salt, 2CH6N3 +·C8H2Cl2O4 2−·H2O, the planes of the carboxyl­ate groups of the dianion are rotated out of the plane of the benzene ring [dihedral angles = 48.42 (10) and 55.64 (9)°]. A duplex-sheet structure is formed through guanidinium–carboxyl­ate N—H⋯O, guanidinium–water N—H⋯O and water–carboxyl­ate O—H⋯O hydrogen-bonding associations.

Related literature

For the structures of 1:1 salts of 4,5-dichloro­phthalate, see: Mallinson et al. (2003); Bozkurt et al. (2006); Smith et al. (2008, 2009); Smith & Wermuth (2010a ,d ). For 1:2 salts, see: Büyükgüngör & Odabaşoğlu (2007); Smith & Wermuth (2010a ,c ). For guanidinium salts of aromatic dicarb­oxy­lic acids, see: Krumbe & Haussuhl (1986); Smith & Wermuth (2010b ).graphic file with name e-67-o1645-scheme1.jpg

Experimental

Crystal data

  • 2CH6N3 +·C8H2Cl2O4 2−·H2O

  • M r = 371.19

  • Monoclinic, Inline graphic

  • a = 15.9797 (5) Å

  • b = 6.9432 (2) Å

  • c = 15.2266 (5) Å

  • β = 94.650 (3)°

  • V = 1683.84 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.42 mm−1

  • T = 200 K

  • 0.28 × 0.25 × 0.20 mm

Data collection

  • Oxford Diffraction Gemini-S CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) T min = 0.933, T max = 0.990

  • 11236 measured reflections

  • 3319 independent reflections

  • 2627 reflections with I > 2σ(I)

  • R int = 0.022

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039

  • wR(F 2) = 0.105

  • S = 1.16

  • 3319 reflections

  • 264 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.83 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 1999); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811021192/ng5176sup1.cif

e-67-o1645-sup1.cif (18.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811021192/ng5176Isup2.hkl

e-67-o1645-Isup2.hkl (159.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811021192/ng5176Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H11A⋯O1Wi 0.83 (2) 2.14 (2) 2.966 (2) 171 (2)
N1A—H12A⋯O12 0.89 (2) 2.07 (2) 2.914 (2) 156.8 (19)
N1B—H11B⋯O22ii 0.88 (2) 2.07 (2) 2.936 (2) 166.3 (19)
N1B—H12B⋯O12iii 0.85 (2) 2.09 (2) 2.904 (2) 162 (2)
N2A—H21A⋯O11 0.89 (3) 2.59 (3) 3.447 (2) 160 (2)
N2A—H21A⋯O12 0.89 (3) 2.35 (3) 3.125 (2) 145 (2)
N2A—H22A⋯O1Wiv 0.81 (3) 2.20 (3) 3.010 (2) 175 (2)
N2B—H21B⋯O22iii 0.86 (3) 2.07 (3) 2.894 (2) 161 (3)
N2B—H22B⋯O11 0.91 (3) 2.09 (3) 2.880 (2) 144 (2)
N3A—H31A⋯O11v 0.85 (3) 2.06 (3) 2.874 (2) 159 (2)
N3A—H32A⋯O22i 0.84 (2) 2.19 (2) 2.923 (2) 147 (2)
N3B—H31B⋯O21 0.89 (2) 1.92 (2) 2.799 (2) 169 (2)
N3B—H32B⋯O11vi 0.86 (2) 2.20 (2) 2.966 (2) 149.2 (19)
O1W—H11W⋯O21 0.83 (3) 1.97 (3) 2.789 (2) 169 (3)
O1W—H12W⋯O12vi 0.88 (3) 1.90 (3) 2.7716 (19) 174 (3)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic.

Acknowledgments

The authors acknowledge financial support from the Australian Reseach Council, and from the Faculty of Science and Technology and the University Library, Queensland University of Technology.

supplementary crystallographic information

Comment

4,5-Dichlorophthalic acid (DCPA) forms 1:1 salts with a number of Lewis bases, having most commonly low-dimensional hydrogen-bonded structures featuring the `planar' hydrogen phthalate anion (Mallinson et al., 2003; Bozkurt et al., 2006; Smith et al., 2008, 2009; Smith & Wermuth, 2010a,d). The `nonplanar' dianionic DCPA species is much less common among the known structures, examples being the 1:2 salts with 4-ethylaniline (Büyükgüngör & Odabaşoğlu, 2007), ethylenediamine (Smith & Wermuth, 2010c), n-butylamine and piperidine (Smith & Wermuth, 2010a). With the strong base guanidine, the formation of 1:2 salts with dicarboxylic acids is more common, e.g. with phthalic acid (Krumbe & Haussuhl, 1986) and terephthalic acids (Smith & Wermuth, 2010b) and our 1:1 stoichiometric reaction of DCPA with guanidine carbonate not unexpectedly gave the bis(guanidinium) salt hydrate, the title compound, 2(CH6N3+) C8H2Cl2O42-. H2O (I) (Fig. 1), and the structure is reported here.

In the structure of (I), the two guanidinium cations (A and B) and the water molecule of solvation provide hydrogen-bonding links between the `non-planar' DCPA dianions (Table 1). The planes of the carboxyl groups of the dianion are rotated out of the plane of the benzene ring [torsion angles C1—C2—C21–O22, -131.93 (17)°; C2—C1—C11–O11, -129.41 (16)°]. Duplex-sheet structures are formed, extending down the (011) planes in the unit cell (Fig. 2). Within these sheets there are guanidinium N—H···Ocarboxyl, N—H···Owater and water O—H···Ocarboxyl associations.

Experimental

Compound (I) was synthesized by heating together for 10 min under reflux, 1 mmol quantities of 4,5-dichlorophthalic acid and guanidine carbonate in 50 ml of 50% ethanol–water. Total evaporation of solvent gave a white non-crystalline powder which on subsequent slow room-temperature evaporation of an aqueous solution gave colourless crystalline plates of (I) from which a specimen was cleaved for the X-ray analysis.

Refinement

H atoms potentially involved in hydrogen-bonding interactions were located by difference methods and their positional and isotropic displacement parameters were refined. Other H atoms were included at calculated positions (C—H = 0.93 Å) and treated as riding, with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

Molecular conformation and atom-numbering scheme for the two guanidinium cations, the DCPA dianion and the water molecule of solvation in (I), with inter-species hydrogen bonds shown as dashed lines. Non-H atoms are shown as 40% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

A view the two-dimensional duplex-sheet structure in the unit cell of (I), viewed down the sheets, showing hydrogen-bonding associations as dashed lines. Non-associative H atoms are omitted.

Crystal data

2CH6N3+·C8H2Cl2O42·H2O F(000) = 768
Mr = 371.19 Dx = 1.464 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 6093 reflections
a = 15.9797 (5) Å θ = 3.2–28.6°
b = 6.9432 (2) Å µ = 0.42 mm1
c = 15.2266 (5) Å T = 200 K
β = 94.650 (3)° Block, colourless
V = 1683.84 (9) Å3 0.28 × 0.25 × 0.20 mm
Z = 4

Data collection

Oxford Diffraction Gemini-S CCD area-detector diffractometer 3319 independent reflections
Radiation source: Enhance (Mo) X-ray source 2627 reflections with I > 2σ(I)
graphite Rint = 0.022
Detector resolution: 16.077 pixels mm-1 θmax = 26.0°, θmin = 3.2°
ω scans h = −18→19
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) k = −8→8
Tmin = 0.933, Tmax = 0.990 l = −11→18
11236 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105 H atoms treated by a mixture of independent and constrained refinement
S = 1.16 w = 1/[σ2(Fo2) + (0.0562P)2 + 0.1489P] where P = (Fo2 + 2Fc2)/3
3319 reflections (Δ/σ)max = 0.001
264 parameters Δρmax = 0.63 e Å3
0 restraints Δρmin = −0.83 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl4 1.05872 (4) 0.24406 (13) 0.56212 (5) 0.0786 (3)
Cl5 1.03264 (4) −0.12369 (11) 0.67711 (5) 0.0676 (3)
O11 0.70520 (8) 0.02886 (19) 0.75803 (8) 0.0304 (4)
O12 0.66435 (8) 0.04844 (17) 0.61463 (8) 0.0260 (4)
O21 0.70448 (9) 0.47401 (19) 0.64857 (9) 0.0325 (4)
O22 0.73076 (9) 0.47465 (18) 0.50680 (9) 0.0313 (4)
C1 0.80565 (11) 0.1185 (2) 0.65803 (11) 0.0207 (5)
C2 0.81671 (11) 0.2830 (2) 0.60675 (11) 0.0221 (5)
C3 0.89502 (12) 0.3185 (3) 0.57737 (13) 0.0338 (6)
C4 0.96178 (12) 0.1945 (4) 0.59905 (14) 0.0397 (7)
C5 0.95069 (13) 0.0335 (3) 0.65047 (14) 0.0361 (7)
C6 0.87267 (12) −0.0039 (3) 0.68007 (12) 0.0278 (6)
C11 0.71840 (11) 0.0626 (2) 0.67974 (12) 0.0206 (5)
C21 0.74498 (11) 0.4223 (2) 0.58557 (12) 0.0221 (5)
N1A 0.51848 (11) 0.2730 (3) 0.54869 (12) 0.0297 (5)
N2A 0.51734 (11) 0.2568 (3) 0.69927 (12) 0.0318 (5)
N3A 0.40865 (10) 0.4034 (2) 0.61686 (13) 0.0281 (5)
C1A 0.48092 (11) 0.3101 (3) 0.62137 (12) 0.0231 (5)
N1B 0.74241 (11) 0.6136 (3) 0.96559 (11) 0.0288 (5)
N2B 0.73486 (13) 0.3392 (3) 0.88218 (13) 0.0403 (6)
N3B 0.74928 (11) 0.6306 (3) 0.81514 (12) 0.0314 (6)
C1B 0.74182 (11) 0.5289 (3) 0.88781 (12) 0.0246 (6)
O1W 0.56692 (9) 0.7224 (2) 0.63168 (9) 0.0296 (4)
H3 0.90300 0.42630 0.54280 0.0410*
H6 0.86520 −0.11150 0.71490 0.0330*
H11A 0.4941 (13) 0.288 (3) 0.4989 (16) 0.029 (6)*
H12A 0.5663 (15) 0.206 (3) 0.5529 (14) 0.040 (6)*
H21A 0.5643 (18) 0.187 (4) 0.7004 (17) 0.056 (7)*
H22A 0.4931 (16) 0.254 (3) 0.7442 (18) 0.048 (7)*
H31A 0.3862 (16) 0.437 (3) 0.6634 (18) 0.049 (7)*
H32A 0.3855 (14) 0.436 (3) 0.5679 (16) 0.038 (7)*
H11B 0.7413 (13) 0.740 (3) 0.9689 (13) 0.033 (6)*
H12B 0.7272 (14) 0.546 (3) 1.0077 (15) 0.037 (6)*
H21B 0.7375 (16) 0.267 (4) 0.9278 (18) 0.055 (8)*
H22B 0.7359 (15) 0.281 (4) 0.8289 (18) 0.056 (8)*
H31B 0.7401 (14) 0.570 (3) 0.7640 (16) 0.039 (6)*
H32B 0.7451 (13) 0.753 (3) 0.8189 (14) 0.032 (6)*
H11W 0.6032 (18) 0.637 (4) 0.6354 (18) 0.058 (8)*
H12W 0.5946 (16) 0.831 (4) 0.6270 (17) 0.054 (7)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl4 0.0240 (3) 0.1185 (7) 0.0961 (6) 0.0108 (3) 0.0218 (3) 0.0627 (5)
Cl5 0.0354 (3) 0.0869 (5) 0.0818 (5) 0.0326 (3) 0.0135 (3) 0.0423 (4)
O11 0.0375 (8) 0.0322 (7) 0.0229 (7) −0.0065 (6) 0.0117 (6) −0.0002 (6)
O12 0.0220 (7) 0.0265 (7) 0.0292 (7) −0.0010 (5) 0.0003 (5) 0.0023 (5)
O21 0.0359 (8) 0.0334 (7) 0.0283 (7) 0.0100 (6) 0.0042 (6) −0.0032 (6)
O22 0.0381 (8) 0.0279 (7) 0.0276 (7) 0.0084 (6) 0.0002 (6) 0.0072 (6)
C1 0.0228 (9) 0.0234 (9) 0.0160 (8) 0.0001 (7) 0.0024 (7) 0.0006 (7)
C2 0.0230 (9) 0.0242 (9) 0.0188 (9) −0.0003 (7) 0.0007 (7) 0.0030 (7)
C3 0.0274 (10) 0.0399 (11) 0.0345 (11) −0.0015 (9) 0.0050 (8) 0.0178 (9)
C4 0.0202 (10) 0.0607 (14) 0.0391 (12) 0.0016 (9) 0.0077 (9) 0.0193 (11)
C5 0.0254 (10) 0.0471 (13) 0.0360 (12) 0.0122 (9) 0.0029 (9) 0.0129 (10)
C6 0.0288 (10) 0.0299 (10) 0.0248 (10) 0.0038 (8) 0.0025 (8) 0.0082 (8)
C11 0.0241 (9) 0.0143 (8) 0.0241 (9) 0.0013 (7) 0.0059 (7) −0.0002 (7)
C21 0.0246 (9) 0.0161 (8) 0.0251 (10) −0.0023 (7) −0.0004 (7) 0.0007 (7)
N1A 0.0270 (9) 0.0394 (10) 0.0230 (9) 0.0087 (8) 0.0038 (7) 0.0013 (7)
N2A 0.0275 (9) 0.0451 (10) 0.0232 (9) 0.0083 (8) 0.0051 (7) 0.0033 (8)
N3A 0.0216 (8) 0.0381 (9) 0.0248 (10) 0.0028 (7) 0.0036 (7) −0.0012 (8)
C1A 0.0211 (9) 0.0228 (9) 0.0258 (10) −0.0032 (7) 0.0046 (7) 0.0001 (7)
N1B 0.0426 (10) 0.0223 (9) 0.0216 (9) −0.0005 (7) 0.0027 (7) −0.0003 (7)
N2B 0.0696 (14) 0.0238 (9) 0.0275 (10) −0.0036 (9) 0.0042 (9) −0.0020 (8)
N3B 0.0434 (10) 0.0275 (10) 0.0236 (9) 0.0023 (8) 0.0048 (7) 0.0019 (7)
C1B 0.0251 (9) 0.0247 (10) 0.0237 (10) −0.0003 (7) 0.0005 (7) 0.0011 (7)
O1W 0.0265 (7) 0.0258 (8) 0.0363 (8) −0.0026 (6) 0.0021 (6) 0.0010 (6)

Geometric parameters (Å, °)

Cl4—C4 1.725 (2) N2B—C1B 1.324 (3)
Cl5—C5 1.728 (2) N3B—C1B 1.326 (3)
O11—C11 1.250 (2) N1B—H12B 0.85 (2)
O12—C11 1.265 (2) N1B—H11B 0.88 (2)
O21—C21 1.252 (2) N2B—H21B 0.86 (3)
O22—C21 1.256 (2) N2B—H22B 0.91 (3)
O1W—H12W 0.88 (3) N3B—H31B 0.89 (2)
O1W—H11W 0.83 (3) N3B—H32B 0.86 (2)
N1A—C1A 1.326 (3) C1—C6 1.387 (3)
N2A—C1A 1.331 (3) C1—C11 1.510 (2)
N3A—C1A 1.321 (2) C1—C2 1.403 (2)
N1A—H12A 0.89 (2) C2—C21 1.514 (2)
N1A—H11A 0.83 (2) C2—C3 1.385 (3)
N2A—H22A 0.81 (3) C3—C4 1.390 (3)
N2A—H21A 0.89 (3) C4—C5 1.384 (3)
N3A—H32A 0.84 (2) C5—C6 1.384 (3)
N3A—H31A 0.85 (3) C3—H3 0.9300
N1B—C1B 1.322 (3) C6—H6 0.9300
H11W—O1W—H12W 105 (3) C2—C3—C4 120.62 (19)
H11A—N1A—H12A 118 (2) C3—C4—C5 120.24 (19)
C1A—N1A—H12A 119.0 (14) Cl4—C4—C3 119.43 (19)
C1A—N1A—H11A 121.8 (15) Cl4—C4—C5 120.33 (17)
H21A—N2A—H22A 115 (2) Cl5—C5—C4 120.90 (16)
C1A—N2A—H22A 123.6 (18) Cl5—C5—C6 119.38 (16)
C1A—N2A—H21A 118.3 (17) C4—C5—C6 119.71 (19)
C1A—N3A—H32A 120.1 (16) C1—C6—C5 120.30 (18)
H31A—N3A—H32A 119 (2) O12—C11—C1 115.63 (15)
C1A—N3A—H31A 121.1 (17) O11—C11—O12 125.16 (16)
C1B—N1B—H12B 116.8 (15) O11—C11—C1 119.18 (16)
H11B—N1B—H12B 120 (2) O22—C21—C2 117.60 (15)
C1B—N1B—H11B 119.8 (13) O21—C21—C2 116.69 (15)
C1B—N2B—H22B 119.6 (18) O21—C21—O22 125.71 (16)
C1B—N2B—H21B 122.2 (19) C2—C3—H3 120.00
H21B—N2B—H22B 118 (3) C4—C3—H3 120.00
H31B—N3B—H32B 122 (2) C5—C6—H6 120.00
C1B—N3B—H31B 117.4 (14) C1—C6—H6 120.00
C1B—N3B—H32B 117.4 (14) N1A—C1A—N2A 119.67 (18)
C6—C1—C11 119.89 (14) N1A—C1A—N3A 120.31 (18)
C2—C1—C6 120.26 (16) N2A—C1A—N3A 120.00 (18)
C2—C1—C11 119.44 (15) N1B—C1B—N2B 119.68 (19)
C3—C2—C21 120.38 (15) N1B—C1B—N3B 121.1 (2)
C1—C2—C21 120.74 (15) N2B—C1B—N3B 119.24 (19)
C1—C2—C3 118.86 (16)
C6—C1—C2—C3 1.2 (2) C1—C2—C21—O21 47.5 (2)
C6—C1—C2—C21 −177.34 (16) C1—C2—C21—O22 −131.93 (17)
C11—C1—C2—C3 −171.43 (16) C3—C2—C21—O21 −131.02 (18)
C11—C1—C2—C21 10.0 (2) C3—C2—C21—O22 49.6 (2)
C2—C1—C6—C5 −1.1 (3) C2—C3—C4—Cl4 −179.47 (15)
C11—C1—C6—C5 171.54 (17) C2—C3—C4—C5 0.0 (3)
C2—C1—C11—O11 −129.41 (16) Cl4—C4—C5—Cl5 −1.3 (3)
C2—C1—C11—O12 52.6 (2) Cl4—C4—C5—C6 179.63 (16)
C6—C1—C11—O11 57.9 (2) C3—C4—C5—Cl5 179.30 (17)
C6—C1—C11—O12 −120.04 (17) C3—C4—C5—C6 0.2 (3)
C1—C2—C3—C4 −0.7 (3) Cl5—C5—C6—C1 −178.78 (15)
C21—C2—C3—C4 177.87 (18) C4—C5—C6—C1 0.4 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1A—H11A···O1Wi 0.83 (2) 2.14 (2) 2.966 (2) 171 (2)
N1A—H12A···O12 0.89 (2) 2.07 (2) 2.914 (2) 156.8 (19)
N1B—H11B···O22ii 0.88 (2) 2.07 (2) 2.936 (2) 166.3 (19)
N1B—H12B···O12iii 0.85 (2) 2.09 (2) 2.904 (2) 162 (2)
N2A—H21A···O11 0.89 (3) 2.59 (3) 3.447 (2) 160 (2)
N2A—H21A···O12 0.89 (3) 2.35 (3) 3.125 (2) 145 (2)
N2A—H22A···O1Wiv 0.81 (3) 2.20 (3) 3.010 (2) 175 (2)
N2B—H21B···O22iii 0.86 (3) 2.07 (3) 2.894 (2) 161 (3)
N2B—H22B···O11 0.91 (3) 2.09 (3) 2.880 (2) 144 (2)
N3A—H31A···O11v 0.85 (3) 2.06 (3) 2.874 (2) 159 (2)
N3A—H32A···O22i 0.84 (2) 2.19 (2) 2.923 (2) 147 (2)
N3B—H31B···O21 0.89 (2) 1.92 (2) 2.799 (2) 169 (2)
N3B—H32B···O11vi 0.86 (2) 2.20 (2) 2.966 (2) 149.2 (19)
O1W—H11W···O21 0.83 (3) 1.97 (3) 2.789 (2) 169 (3)
O1W—H12W···O12vi 0.88 (3) 1.90 (3) 2.7716 (19) 174 (3)

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x, −y+3/2, z+1/2; (iii) x, −y+1/2, z+1/2; (iv) −x+1, y−1/2, −z+3/2; (v) −x+1, y+1/2, −z+3/2; (vi) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG5176).

References

  1. Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
  2. Bozkurt, E., Kartal, I., Odabaşoğlu, M. & Büyükgüngör, O. (2006). Acta Cryst. E62, o4258–o4260.
  3. Büyükgüngör, O. & Odabaşoğlu, M. (2007). Acta Cryst. E63, o4376–o4377.
  4. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  5. Krumbe, W. & Haussuhl, S. (1986). Z. Kristallogr. 179, 267–279.
  6. Mallinson, P. R., Smith, G. T., Wilson, C. C., Grech, E. & Wozniak, K. (2003). J. Am. Chem. Soc. 125, 4259–4270. [DOI] [PubMed]
  7. Oxford Diffraction (2010). CrysAlis PRO Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Smith, G. & Wermuth, U. D. (2010a). Acta Cryst. C66, o374–o380. [DOI] [PubMed]
  10. Smith, G. & Wermuth, U. D. (2010b). Acta Cryst. C66, o575–o580. [DOI] [PubMed]
  11. Smith, G. & Wermuth, U. D. (2010c). Acta Cryst. E66, o235. [DOI] [PMC free article] [PubMed]
  12. Smith, G. & Wermuth, U. D. (2010d). J. Chem. Crystallogr. 40, 151–155.
  13. Smith, G., Wermuth, U. D. & White, J. M. (2008). Acta Cryst. C64, o180–o183. [DOI] [PubMed]
  14. Smith, G., Wermuth, U. D. & White, J. M. (2009). Acta Cryst. C65, o103–o107. [DOI] [PubMed]
  15. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811021192/ng5176sup1.cif

e-67-o1645-sup1.cif (18.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811021192/ng5176Isup2.hkl

e-67-o1645-Isup2.hkl (159.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811021192/ng5176Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES