Abstract
In the structure of the title hydrated salt, 2CH6N3 +·C8H2Cl2O4 2−·H2O, the planes of the carboxylate groups of the dianion are rotated out of the plane of the benzene ring [dihedral angles = 48.42 (10) and 55.64 (9)°]. A duplex-sheet structure is formed through guanidinium–carboxylate N—H⋯O, guanidinium–water N—H⋯O and water–carboxylate O—H⋯O hydrogen-bonding associations.
Related literature
For the structures of 1:1 salts of 4,5-dichlorophthalate, see: Mallinson et al. (2003 ▶); Bozkurt et al. (2006 ▶); Smith et al. (2008 ▶, 2009 ▶); Smith & Wermuth (2010a
▶,d
▶). For 1:2 salts, see: Büyükgüngör & Odabaşoğlu (2007 ▶); Smith & Wermuth (2010a
▶,c
▶). For guanidinium salts of aromatic dicarboxylic acids, see: Krumbe & Haussuhl (1986 ▶); Smith & Wermuth (2010b
▶).
Experimental
Crystal data
2CH6N3 +·C8H2Cl2O4 2−·H2O
M r = 371.19
Monoclinic,
a = 15.9797 (5) Å
b = 6.9432 (2) Å
c = 15.2266 (5) Å
β = 94.650 (3)°
V = 1683.84 (9) Å3
Z = 4
Mo Kα radiation
μ = 0.42 mm−1
T = 200 K
0.28 × 0.25 × 0.20 mm
Data collection
Oxford Diffraction Gemini-S CCD area-detector diffractometer
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010 ▶) T min = 0.933, T max = 0.990
11236 measured reflections
3319 independent reflections
2627 reflections with I > 2σ(I)
R int = 0.022
Refinement
R[F 2 > 2σ(F 2)] = 0.039
wR(F 2) = 0.105
S = 1.16
3319 reflections
264 parameters
H atoms treated by a mixture of independent and constrained refinement
Δρmax = 0.63 e Å−3
Δρmin = −0.83 e Å−3
Data collection: CrysAlis PRO (Oxford Diffraction, 2010 ▶); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1994 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▶) within WinGX (Farrugia, 1999 ▶); molecular graphics: PLATON (Spek, 2009 ▶); software used to prepare material for publication: PLATON.
Supplementary Material
Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811021192/ng5176sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811021192/ng5176Isup2.hkl
Supplementary material file. DOI: 10.1107/S1600536811021192/ng5176Isup3.cml
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| N1A—H11A⋯O1Wi | 0.83 (2) | 2.14 (2) | 2.966 (2) | 171 (2) |
| N1A—H12A⋯O12 | 0.89 (2) | 2.07 (2) | 2.914 (2) | 156.8 (19) |
| N1B—H11B⋯O22ii | 0.88 (2) | 2.07 (2) | 2.936 (2) | 166.3 (19) |
| N1B—H12B⋯O12iii | 0.85 (2) | 2.09 (2) | 2.904 (2) | 162 (2) |
| N2A—H21A⋯O11 | 0.89 (3) | 2.59 (3) | 3.447 (2) | 160 (2) |
| N2A—H21A⋯O12 | 0.89 (3) | 2.35 (3) | 3.125 (2) | 145 (2) |
| N2A—H22A⋯O1Wiv | 0.81 (3) | 2.20 (3) | 3.010 (2) | 175 (2) |
| N2B—H21B⋯O22iii | 0.86 (3) | 2.07 (3) | 2.894 (2) | 161 (3) |
| N2B—H22B⋯O11 | 0.91 (3) | 2.09 (3) | 2.880 (2) | 144 (2) |
| N3A—H31A⋯O11v | 0.85 (3) | 2.06 (3) | 2.874 (2) | 159 (2) |
| N3A—H32A⋯O22i | 0.84 (2) | 2.19 (2) | 2.923 (2) | 147 (2) |
| N3B—H31B⋯O21 | 0.89 (2) | 1.92 (2) | 2.799 (2) | 169 (2) |
| N3B—H32B⋯O11vi | 0.86 (2) | 2.20 (2) | 2.966 (2) | 149.2 (19) |
| O1W—H11W⋯O21 | 0.83 (3) | 1.97 (3) | 2.789 (2) | 169 (3) |
| O1W—H12W⋯O12vi | 0.88 (3) | 1.90 (3) | 2.7716 (19) | 174 (3) |
Symmetry codes: (i)
; (ii)
; (iii)
; (iv)
; (v)
; (vi)
.
Acknowledgments
The authors acknowledge financial support from the Australian Reseach Council, and from the Faculty of Science and Technology and the University Library, Queensland University of Technology.
supplementary crystallographic information
Comment
4,5-Dichlorophthalic acid (DCPA) forms 1:1 salts with a number of Lewis bases, having most commonly low-dimensional hydrogen-bonded structures featuring the `planar' hydrogen phthalate anion (Mallinson et al., 2003; Bozkurt et al., 2006; Smith et al., 2008, 2009; Smith & Wermuth, 2010a,d). The `nonplanar' dianionic DCPA species is much less common among the known structures, examples being the 1:2 salts with 4-ethylaniline (Büyükgüngör & Odabaşoğlu, 2007), ethylenediamine (Smith & Wermuth, 2010c), n-butylamine and piperidine (Smith & Wermuth, 2010a). With the strong base guanidine, the formation of 1:2 salts with dicarboxylic acids is more common, e.g. with phthalic acid (Krumbe & Haussuhl, 1986) and terephthalic acids (Smith & Wermuth, 2010b) and our 1:1 stoichiometric reaction of DCPA with guanidine carbonate not unexpectedly gave the bis(guanidinium) salt hydrate, the title compound, 2(CH6N3+) C8H2Cl2O42-. H2O (I) (Fig. 1), and the structure is reported here.
In the structure of (I), the two guanidinium cations (A and B) and the water molecule of solvation provide hydrogen-bonding links between the `non-planar' DCPA dianions (Table 1). The planes of the carboxyl groups of the dianion are rotated out of the plane of the benzene ring [torsion angles C1—C2—C21–O22, -131.93 (17)°; C2—C1—C11–O11, -129.41 (16)°]. Duplex-sheet structures are formed, extending down the (011) planes in the unit cell (Fig. 2). Within these sheets there are guanidinium N—H···Ocarboxyl, N—H···Owater and water O—H···Ocarboxyl associations.
Experimental
Compound (I) was synthesized by heating together for 10 min under reflux, 1 mmol quantities of 4,5-dichlorophthalic acid and guanidine carbonate in 50 ml of 50% ethanol–water. Total evaporation of solvent gave a white non-crystalline powder which on subsequent slow room-temperature evaporation of an aqueous solution gave colourless crystalline plates of (I) from which a specimen was cleaved for the X-ray analysis.
Refinement
H atoms potentially involved in hydrogen-bonding interactions were located by difference methods and their positional and isotropic displacement parameters were refined. Other H atoms were included at calculated positions (C—H = 0.93 Å) and treated as riding, with Uiso(H) = 1.2Ueq(C).
Figures
Fig. 1.
Molecular conformation and atom-numbering scheme for the two guanidinium cations, the DCPA dianion and the water molecule of solvation in (I), with inter-species hydrogen bonds shown as dashed lines. Non-H atoms are shown as 40% probability displacement ellipsoids.
Fig. 2.
A view the two-dimensional duplex-sheet structure in the unit cell of (I), viewed down the sheets, showing hydrogen-bonding associations as dashed lines. Non-associative H atoms are omitted.
Crystal data
| 2CH6N3+·C8H2Cl2O42−·H2O | F(000) = 768 |
| Mr = 371.19 | Dx = 1.464 Mg m−3 |
| Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
| Hall symbol: -P 2ybc | Cell parameters from 6093 reflections |
| a = 15.9797 (5) Å | θ = 3.2–28.6° |
| b = 6.9432 (2) Å | µ = 0.42 mm−1 |
| c = 15.2266 (5) Å | T = 200 K |
| β = 94.650 (3)° | Block, colourless |
| V = 1683.84 (9) Å3 | 0.28 × 0.25 × 0.20 mm |
| Z = 4 |
Data collection
| Oxford Diffraction Gemini-S CCD area-detector diffractometer | 3319 independent reflections |
| Radiation source: Enhance (Mo) X-ray source | 2627 reflections with I > 2σ(I) |
| graphite | Rint = 0.022 |
| Detector resolution: 16.077 pixels mm-1 | θmax = 26.0°, θmin = 3.2° |
| ω scans | h = −18→19 |
| Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) | k = −8→8 |
| Tmin = 0.933, Tmax = 0.990 | l = −11→18 |
| 11236 measured reflections |
Refinement
| Refinement on F2 | Primary atom site location: structure-invariant direct methods |
| Least-squares matrix: full | Secondary atom site location: difference Fourier map |
| R[F2 > 2σ(F2)] = 0.039 | Hydrogen site location: inferred from neighbouring sites |
| wR(F2) = 0.105 | H atoms treated by a mixture of independent and constrained refinement |
| S = 1.16 | w = 1/[σ2(Fo2) + (0.0562P)2 + 0.1489P] where P = (Fo2 + 2Fc2)/3 |
| 3319 reflections | (Δ/σ)max = 0.001 |
| 264 parameters | Δρmax = 0.63 e Å−3 |
| 0 restraints | Δρmin = −0.83 e Å−3 |
Special details
| Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| Cl4 | 1.05872 (4) | 0.24406 (13) | 0.56212 (5) | 0.0786 (3) | |
| Cl5 | 1.03264 (4) | −0.12369 (11) | 0.67711 (5) | 0.0676 (3) | |
| O11 | 0.70520 (8) | 0.02886 (19) | 0.75803 (8) | 0.0304 (4) | |
| O12 | 0.66435 (8) | 0.04844 (17) | 0.61463 (8) | 0.0260 (4) | |
| O21 | 0.70448 (9) | 0.47401 (19) | 0.64857 (9) | 0.0325 (4) | |
| O22 | 0.73076 (9) | 0.47465 (18) | 0.50680 (9) | 0.0313 (4) | |
| C1 | 0.80565 (11) | 0.1185 (2) | 0.65803 (11) | 0.0207 (5) | |
| C2 | 0.81671 (11) | 0.2830 (2) | 0.60675 (11) | 0.0221 (5) | |
| C3 | 0.89502 (12) | 0.3185 (3) | 0.57737 (13) | 0.0338 (6) | |
| C4 | 0.96178 (12) | 0.1945 (4) | 0.59905 (14) | 0.0397 (7) | |
| C5 | 0.95069 (13) | 0.0335 (3) | 0.65047 (14) | 0.0361 (7) | |
| C6 | 0.87267 (12) | −0.0039 (3) | 0.68007 (12) | 0.0278 (6) | |
| C11 | 0.71840 (11) | 0.0626 (2) | 0.67974 (12) | 0.0206 (5) | |
| C21 | 0.74498 (11) | 0.4223 (2) | 0.58557 (12) | 0.0221 (5) | |
| N1A | 0.51848 (11) | 0.2730 (3) | 0.54869 (12) | 0.0297 (5) | |
| N2A | 0.51734 (11) | 0.2568 (3) | 0.69927 (12) | 0.0318 (5) | |
| N3A | 0.40865 (10) | 0.4034 (2) | 0.61686 (13) | 0.0281 (5) | |
| C1A | 0.48092 (11) | 0.3101 (3) | 0.62137 (12) | 0.0231 (5) | |
| N1B | 0.74241 (11) | 0.6136 (3) | 0.96559 (11) | 0.0288 (5) | |
| N2B | 0.73486 (13) | 0.3392 (3) | 0.88218 (13) | 0.0403 (6) | |
| N3B | 0.74928 (11) | 0.6306 (3) | 0.81514 (12) | 0.0314 (6) | |
| C1B | 0.74182 (11) | 0.5289 (3) | 0.88781 (12) | 0.0246 (6) | |
| O1W | 0.56692 (9) | 0.7224 (2) | 0.63168 (9) | 0.0296 (4) | |
| H3 | 0.90300 | 0.42630 | 0.54280 | 0.0410* | |
| H6 | 0.86520 | −0.11150 | 0.71490 | 0.0330* | |
| H11A | 0.4941 (13) | 0.288 (3) | 0.4989 (16) | 0.029 (6)* | |
| H12A | 0.5663 (15) | 0.206 (3) | 0.5529 (14) | 0.040 (6)* | |
| H21A | 0.5643 (18) | 0.187 (4) | 0.7004 (17) | 0.056 (7)* | |
| H22A | 0.4931 (16) | 0.254 (3) | 0.7442 (18) | 0.048 (7)* | |
| H31A | 0.3862 (16) | 0.437 (3) | 0.6634 (18) | 0.049 (7)* | |
| H32A | 0.3855 (14) | 0.436 (3) | 0.5679 (16) | 0.038 (7)* | |
| H11B | 0.7413 (13) | 0.740 (3) | 0.9689 (13) | 0.033 (6)* | |
| H12B | 0.7272 (14) | 0.546 (3) | 1.0077 (15) | 0.037 (6)* | |
| H21B | 0.7375 (16) | 0.267 (4) | 0.9278 (18) | 0.055 (8)* | |
| H22B | 0.7359 (15) | 0.281 (4) | 0.8289 (18) | 0.056 (8)* | |
| H31B | 0.7401 (14) | 0.570 (3) | 0.7640 (16) | 0.039 (6)* | |
| H32B | 0.7451 (13) | 0.753 (3) | 0.8189 (14) | 0.032 (6)* | |
| H11W | 0.6032 (18) | 0.637 (4) | 0.6354 (18) | 0.058 (8)* | |
| H12W | 0.5946 (16) | 0.831 (4) | 0.6270 (17) | 0.054 (7)* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| Cl4 | 0.0240 (3) | 0.1185 (7) | 0.0961 (6) | 0.0108 (3) | 0.0218 (3) | 0.0627 (5) |
| Cl5 | 0.0354 (3) | 0.0869 (5) | 0.0818 (5) | 0.0326 (3) | 0.0135 (3) | 0.0423 (4) |
| O11 | 0.0375 (8) | 0.0322 (7) | 0.0229 (7) | −0.0065 (6) | 0.0117 (6) | −0.0002 (6) |
| O12 | 0.0220 (7) | 0.0265 (7) | 0.0292 (7) | −0.0010 (5) | 0.0003 (5) | 0.0023 (5) |
| O21 | 0.0359 (8) | 0.0334 (7) | 0.0283 (7) | 0.0100 (6) | 0.0042 (6) | −0.0032 (6) |
| O22 | 0.0381 (8) | 0.0279 (7) | 0.0276 (7) | 0.0084 (6) | 0.0002 (6) | 0.0072 (6) |
| C1 | 0.0228 (9) | 0.0234 (9) | 0.0160 (8) | 0.0001 (7) | 0.0024 (7) | 0.0006 (7) |
| C2 | 0.0230 (9) | 0.0242 (9) | 0.0188 (9) | −0.0003 (7) | 0.0007 (7) | 0.0030 (7) |
| C3 | 0.0274 (10) | 0.0399 (11) | 0.0345 (11) | −0.0015 (9) | 0.0050 (8) | 0.0178 (9) |
| C4 | 0.0202 (10) | 0.0607 (14) | 0.0391 (12) | 0.0016 (9) | 0.0077 (9) | 0.0193 (11) |
| C5 | 0.0254 (10) | 0.0471 (13) | 0.0360 (12) | 0.0122 (9) | 0.0029 (9) | 0.0129 (10) |
| C6 | 0.0288 (10) | 0.0299 (10) | 0.0248 (10) | 0.0038 (8) | 0.0025 (8) | 0.0082 (8) |
| C11 | 0.0241 (9) | 0.0143 (8) | 0.0241 (9) | 0.0013 (7) | 0.0059 (7) | −0.0002 (7) |
| C21 | 0.0246 (9) | 0.0161 (8) | 0.0251 (10) | −0.0023 (7) | −0.0004 (7) | 0.0007 (7) |
| N1A | 0.0270 (9) | 0.0394 (10) | 0.0230 (9) | 0.0087 (8) | 0.0038 (7) | 0.0013 (7) |
| N2A | 0.0275 (9) | 0.0451 (10) | 0.0232 (9) | 0.0083 (8) | 0.0051 (7) | 0.0033 (8) |
| N3A | 0.0216 (8) | 0.0381 (9) | 0.0248 (10) | 0.0028 (7) | 0.0036 (7) | −0.0012 (8) |
| C1A | 0.0211 (9) | 0.0228 (9) | 0.0258 (10) | −0.0032 (7) | 0.0046 (7) | 0.0001 (7) |
| N1B | 0.0426 (10) | 0.0223 (9) | 0.0216 (9) | −0.0005 (7) | 0.0027 (7) | −0.0003 (7) |
| N2B | 0.0696 (14) | 0.0238 (9) | 0.0275 (10) | −0.0036 (9) | 0.0042 (9) | −0.0020 (8) |
| N3B | 0.0434 (10) | 0.0275 (10) | 0.0236 (9) | 0.0023 (8) | 0.0048 (7) | 0.0019 (7) |
| C1B | 0.0251 (9) | 0.0247 (10) | 0.0237 (10) | −0.0003 (7) | 0.0005 (7) | 0.0011 (7) |
| O1W | 0.0265 (7) | 0.0258 (8) | 0.0363 (8) | −0.0026 (6) | 0.0021 (6) | 0.0010 (6) |
Geometric parameters (Å, °)
| Cl4—C4 | 1.725 (2) | N2B—C1B | 1.324 (3) |
| Cl5—C5 | 1.728 (2) | N3B—C1B | 1.326 (3) |
| O11—C11 | 1.250 (2) | N1B—H12B | 0.85 (2) |
| O12—C11 | 1.265 (2) | N1B—H11B | 0.88 (2) |
| O21—C21 | 1.252 (2) | N2B—H21B | 0.86 (3) |
| O22—C21 | 1.256 (2) | N2B—H22B | 0.91 (3) |
| O1W—H12W | 0.88 (3) | N3B—H31B | 0.89 (2) |
| O1W—H11W | 0.83 (3) | N3B—H32B | 0.86 (2) |
| N1A—C1A | 1.326 (3) | C1—C6 | 1.387 (3) |
| N2A—C1A | 1.331 (3) | C1—C11 | 1.510 (2) |
| N3A—C1A | 1.321 (2) | C1—C2 | 1.403 (2) |
| N1A—H12A | 0.89 (2) | C2—C21 | 1.514 (2) |
| N1A—H11A | 0.83 (2) | C2—C3 | 1.385 (3) |
| N2A—H22A | 0.81 (3) | C3—C4 | 1.390 (3) |
| N2A—H21A | 0.89 (3) | C4—C5 | 1.384 (3) |
| N3A—H32A | 0.84 (2) | C5—C6 | 1.384 (3) |
| N3A—H31A | 0.85 (3) | C3—H3 | 0.9300 |
| N1B—C1B | 1.322 (3) | C6—H6 | 0.9300 |
| H11W—O1W—H12W | 105 (3) | C2—C3—C4 | 120.62 (19) |
| H11A—N1A—H12A | 118 (2) | C3—C4—C5 | 120.24 (19) |
| C1A—N1A—H12A | 119.0 (14) | Cl4—C4—C3 | 119.43 (19) |
| C1A—N1A—H11A | 121.8 (15) | Cl4—C4—C5 | 120.33 (17) |
| H21A—N2A—H22A | 115 (2) | Cl5—C5—C4 | 120.90 (16) |
| C1A—N2A—H22A | 123.6 (18) | Cl5—C5—C6 | 119.38 (16) |
| C1A—N2A—H21A | 118.3 (17) | C4—C5—C6 | 119.71 (19) |
| C1A—N3A—H32A | 120.1 (16) | C1—C6—C5 | 120.30 (18) |
| H31A—N3A—H32A | 119 (2) | O12—C11—C1 | 115.63 (15) |
| C1A—N3A—H31A | 121.1 (17) | O11—C11—O12 | 125.16 (16) |
| C1B—N1B—H12B | 116.8 (15) | O11—C11—C1 | 119.18 (16) |
| H11B—N1B—H12B | 120 (2) | O22—C21—C2 | 117.60 (15) |
| C1B—N1B—H11B | 119.8 (13) | O21—C21—C2 | 116.69 (15) |
| C1B—N2B—H22B | 119.6 (18) | O21—C21—O22 | 125.71 (16) |
| C1B—N2B—H21B | 122.2 (19) | C2—C3—H3 | 120.00 |
| H21B—N2B—H22B | 118 (3) | C4—C3—H3 | 120.00 |
| H31B—N3B—H32B | 122 (2) | C5—C6—H6 | 120.00 |
| C1B—N3B—H31B | 117.4 (14) | C1—C6—H6 | 120.00 |
| C1B—N3B—H32B | 117.4 (14) | N1A—C1A—N2A | 119.67 (18) |
| C6—C1—C11 | 119.89 (14) | N1A—C1A—N3A | 120.31 (18) |
| C2—C1—C6 | 120.26 (16) | N2A—C1A—N3A | 120.00 (18) |
| C2—C1—C11 | 119.44 (15) | N1B—C1B—N2B | 119.68 (19) |
| C3—C2—C21 | 120.38 (15) | N1B—C1B—N3B | 121.1 (2) |
| C1—C2—C21 | 120.74 (15) | N2B—C1B—N3B | 119.24 (19) |
| C1—C2—C3 | 118.86 (16) | ||
| C6—C1—C2—C3 | 1.2 (2) | C1—C2—C21—O21 | 47.5 (2) |
| C6—C1—C2—C21 | −177.34 (16) | C1—C2—C21—O22 | −131.93 (17) |
| C11—C1—C2—C3 | −171.43 (16) | C3—C2—C21—O21 | −131.02 (18) |
| C11—C1—C2—C21 | 10.0 (2) | C3—C2—C21—O22 | 49.6 (2) |
| C2—C1—C6—C5 | −1.1 (3) | C2—C3—C4—Cl4 | −179.47 (15) |
| C11—C1—C6—C5 | 171.54 (17) | C2—C3—C4—C5 | 0.0 (3) |
| C2—C1—C11—O11 | −129.41 (16) | Cl4—C4—C5—Cl5 | −1.3 (3) |
| C2—C1—C11—O12 | 52.6 (2) | Cl4—C4—C5—C6 | 179.63 (16) |
| C6—C1—C11—O11 | 57.9 (2) | C3—C4—C5—Cl5 | 179.30 (17) |
| C6—C1—C11—O12 | −120.04 (17) | C3—C4—C5—C6 | 0.2 (3) |
| C1—C2—C3—C4 | −0.7 (3) | Cl5—C5—C6—C1 | −178.78 (15) |
| C21—C2—C3—C4 | 177.87 (18) | C4—C5—C6—C1 | 0.4 (3) |
Hydrogen-bond geometry (Å, °)
| D—H···A | D—H | H···A | D···A | D—H···A |
| N1A—H11A···O1Wi | 0.83 (2) | 2.14 (2) | 2.966 (2) | 171 (2) |
| N1A—H12A···O12 | 0.89 (2) | 2.07 (2) | 2.914 (2) | 156.8 (19) |
| N1B—H11B···O22ii | 0.88 (2) | 2.07 (2) | 2.936 (2) | 166.3 (19) |
| N1B—H12B···O12iii | 0.85 (2) | 2.09 (2) | 2.904 (2) | 162 (2) |
| N2A—H21A···O11 | 0.89 (3) | 2.59 (3) | 3.447 (2) | 160 (2) |
| N2A—H21A···O12 | 0.89 (3) | 2.35 (3) | 3.125 (2) | 145 (2) |
| N2A—H22A···O1Wiv | 0.81 (3) | 2.20 (3) | 3.010 (2) | 175 (2) |
| N2B—H21B···O22iii | 0.86 (3) | 2.07 (3) | 2.894 (2) | 161 (3) |
| N2B—H22B···O11 | 0.91 (3) | 2.09 (3) | 2.880 (2) | 144 (2) |
| N3A—H31A···O11v | 0.85 (3) | 2.06 (3) | 2.874 (2) | 159 (2) |
| N3A—H32A···O22i | 0.84 (2) | 2.19 (2) | 2.923 (2) | 147 (2) |
| N3B—H31B···O21 | 0.89 (2) | 1.92 (2) | 2.799 (2) | 169 (2) |
| N3B—H32B···O11vi | 0.86 (2) | 2.20 (2) | 2.966 (2) | 149.2 (19) |
| O1W—H11W···O21 | 0.83 (3) | 1.97 (3) | 2.789 (2) | 169 (3) |
| O1W—H12W···O12vi | 0.88 (3) | 1.90 (3) | 2.7716 (19) | 174 (3) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x, −y+3/2, z+1/2; (iii) x, −y+1/2, z+1/2; (iv) −x+1, y−1/2, −z+3/2; (v) −x+1, y+1/2, −z+3/2; (vi) x, y+1, z.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG5176).
References
- Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
- Bozkurt, E., Kartal, I., Odabaşoğlu, M. & Büyükgüngör, O. (2006). Acta Cryst. E62, o4258–o4260.
- Büyükgüngör, O. & Odabaşoğlu, M. (2007). Acta Cryst. E63, o4376–o4377.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
- Krumbe, W. & Haussuhl, S. (1986). Z. Kristallogr. 179, 267–279.
- Mallinson, P. R., Smith, G. T., Wilson, C. C., Grech, E. & Wozniak, K. (2003). J. Am. Chem. Soc. 125, 4259–4270. [DOI] [PubMed]
- Oxford Diffraction (2010). CrysAlis PRO Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Smith, G. & Wermuth, U. D. (2010a). Acta Cryst. C66, o374–o380. [DOI] [PubMed]
- Smith, G. & Wermuth, U. D. (2010b). Acta Cryst. C66, o575–o580. [DOI] [PubMed]
- Smith, G. & Wermuth, U. D. (2010c). Acta Cryst. E66, o235. [DOI] [PMC free article] [PubMed]
- Smith, G. & Wermuth, U. D. (2010d). J. Chem. Crystallogr. 40, 151–155.
- Smith, G., Wermuth, U. D. & White, J. M. (2008). Acta Cryst. C64, o180–o183. [DOI] [PubMed]
- Smith, G., Wermuth, U. D. & White, J. M. (2009). Acta Cryst. C65, o103–o107. [DOI] [PubMed]
- Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811021192/ng5176sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811021192/ng5176Isup2.hkl
Supplementary material file. DOI: 10.1107/S1600536811021192/ng5176Isup3.cml
Additional supplementary materials: crystallographic information; 3D view; checkCIF report


