Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Jun 18;67(Pt 7):o1686. doi: 10.1107/S1600536811022203

3-Nitroso-2,4,6,8-tetra­phenyl-3,7-diaza­bicyclo­[3.3.1]nonan-9-one

Sampath Natarajan a,*, Rita Mathews a
PMCID: PMC3152129  PMID: 21837083

Abstract

In the title compound, C31H27N3O2, the two piperidine rings fused to each other each adopt a slightly distorted chair conformation. The phenyl rings on the N-unsubstituted piperidine ring occupy an equatorial position, while those on the N-nitroso-substituted piperidine ring are in axial positions. The NO group is approximately coplanar with the piperidine ring with a maximum deviation of 0.048 (4) Å. The dihedral angles between the mean planes of the axially and equatorially oriented phenyl rings are 27.7 (1) and 31.9 (1)°, respectively. Mol­ecular packing is stabilized by weak inter­molecular C—H⋯O and C—H⋯π inter­actions.

Related literature

For piperidine ring conformations, see: Hofer (1976); Ramalingam et al. (1979); Mulekar & Berlin (1989); Pandiarajan et al. (1991); Rogers & Woodbrey (1962). For related structures, see: Hemalatha & Nagarajan (2010); Sampath et al. (2005). For puckering parameters, see: Cremer & Pople (1975). For the synthesis of the title compound, see: Noller & Baliah (1948). graphic file with name e-67-o1686-scheme1.jpg

Experimental

Crystal data

  • C31H27N3O2

  • M r = 473.56

  • Monoclinic, Inline graphic

  • a = 18.723 (4) Å

  • b = 8.8319 (17) Å

  • c = 15.806 (3) Å

  • β = 104.728 (3)°

  • V = 2527.8 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.26 × 0.23 × 0.21 mm

Data collection

  • Bruker SMART APEX CCD diffractometer

  • 19483 measured reflections

  • 5385 independent reflections

  • 3235 reflections with I > 2σ(I)

  • R int = 0.056

Refinement

  • R[F 2 > 2σ(F 2)] = 0.081

  • wR(F 2) = 0.187

  • S = 1.06

  • 5385 reflections

  • 334 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.29 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811022203/jj2089sup1.cif

e-67-o1686-sup1.cif (25.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811022203/jj2089Isup2.hkl

e-67-o1686-Isup2.hkl (258.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811022203/jj2089Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C31–C36 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C18—H18⋯O3 0.93 2.94 3.607 (1) 130
C20—H20⋯O1 0.93 2.79 3.622 (4) 150
C24—H24⋯O2 0.93 2.64 3.276 (5) 126
C36—H36⋯O3 0.93 2.80 3.415 (9) 125
C17—H17⋯O1i 0.93 2.66 3.311 (4) 128
C22—H22⋯O1ii 0.93 2.74 3.579 (5) 150
C32—H32⋯O2iii 0.93 2.43 3.127 (6) 132
C34—H34⋯O3iv 0.93 2.24 2.878 (1) 125
C29—H29⋯Cg1v 0.93 2.87 3.677 146

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

supplementary crystallographic information

Comment

The piperidine ring system offers a wide variety of conformational flexibility such as chair, boat and twisted boat conformations (Hofer, 1976). However, both the chair and slightly distorted chair conformations are found to be the most favored (Ramalingam et al., 1979; Mulekar & Berlin, 1989). N-nitroso piperidine compounds have been shown to occupy both axial and equatorial positions with the mean plane of the N—NO2 group being coplanar to the mean plane of the piperidine ring (Hemalatha & Nagarajan, 2010; Sampath et al., 2005). The phenyl rings tend to occupy equatorial positions when the N—NO2 group orients itself perpendicular to the piperidine ring to avoid steric hindrance. π-electron delocalization on the N—N—O group, which restricts the free rotation of N—N bond, results in orientations that are planar (syn; Pandiarajan et al., 1991) or perpendicular (anti; Rogers & Woodbrey, 1962) with respect to the piperidine ring. In 2,6-diphenyl-3-methyl-N-nitrosopiperidin- 4-one (Hemalatha & Nagarajan, 2010) the nitroso group shows both syn and anti conformations while the piperidine ring displays a boat conformation which may influence the phenyl rings to occupy axial and equitorial positions with respect to the piperidine ring.

In the title compound both piperidine rings adopt a slightly distorted chair conformation (Cremer & Pople, 1975) with puckering parameters parameters Q, θ and φ of 0.538 (3) Å, 18.0 (3)°, 142.8 (1)° [N-substituted piperidine ring (N1/C2/C8/C9/C7/C6)] and 0.657 (2) Å, 173.2 (3)° and 51.0 (2)° [N-free piperidine ring (N4/C5/C7/C9/C8/C3)], respectively (Fig. 1). For an ideal chair θ has a value of 0 or 180°. In the N-substituted piperidine ring (N1/C2/C8/C9/C7/C6) the N atom displays sp2 hybridization, as evidenced by sum of angles around the N1 atom being nearly equal to 360° [C2/N1/C6 = 122.0 (2)°, C2/N1/N2 = 123.2 (3)° and C6/N1/N2 = 114.8 (3)°]}.

Phenyl rings C13–C18 and C19–C24 are substituted axially in the N—NO2 piperidine ring. Torsion angles for phenyl ring C13–C18 {C6/N1/C2/C13 = 79.7 (3)°; C9/C8/C2/C13 = -69.2 (3)°} and for phenyl ring C19–C24 [C2/N1/C6/C19 = -88.8 (3)°; C9/C7/C6/C19 = 84.1 (3)°}] support this observation. The dihedral angle between these phenyl rings is 27.7 (1)°. Phenyl rings C25–C30 and C31–C36 are oriented equatorially to the piperidine ring. Torsion angles for phenyl ring C25–C30 [C3/N4/C5/C25 = 172.9 (2)°, C9/C7/C5/C25 = -171.7 (2)°] and C31–C36 [C9/C8/C3/C31 = 178.8 (2)°, C5/N4/C3/C31 = -176.2 (2)°] support this observation. The dihedral angle between these phenyl rings is 31.9 (1)°. Molecular packing is stabilized by weak C—H···O intra and intermolecular interactions and weak C—H···π intermolecular interactions (Table 1, Fig. 2).

Experimental

Noller & Baliah (1948) developed a novel method to synthesize piperidin-4-one derivatives by the Mannich condensation reaction using respective aldehydes and ketones with ammonium acetate in the ratio of [2:1:1], respectively. The title compound was synthesized using benzaldehyde (0.2 M), acetone (0.1) and ammonium acetate (0.1M) added to pure ethanol and heated on a hot plate up to the boiling range. The resulting product of diazabicyclic[3.3.1]nonan-9-one was separated out and treated with an equimolar (1:1) quantity of NaNO2/HCl/80% ethanol and kept at 80° C for 4 h with vigorous stirring. The resuling title compound was separated out and crystals were grown using acetonitrile as the solvent.

Refinement

H atoms were positioned geometrically and refined using a riding model with C—H = 0.93 Å for aromatic H, 0.97 Å for methylene, 0.96 Å for methyl H atoms and N—H = 0.86 Å. The Uiso parameters for H atoms were constraned to be 1.5Ueq of the carrier atom for the methyl H atoms and 1.2Ueq of the carrier atom for the remaining H atoms.

Figures

Fig. 1.

Fig. 1.

ORTEP diagram of the title molecule with the atom numbering scheme. Displacement ellipsoid are drawn at 30% probability level. H atoms were removed for clarity.

Fig. 2.

Fig. 2.

Packing diagram of the title compound viewed down the b axis. Dashed lines indicate weak C—H···O intra and intermolecular interactions.

Crystal data

C31H27N3O2 F(000) = 1000
Mr = 473.56 Dx = 1.244 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 19483 reflections
a = 18.723 (4) Å θ = 2.3–27.7°
b = 8.8319 (17) Å µ = 0.08 mm1
c = 15.806 (3) Å T = 293 K
β = 104.728 (3)° Block, yellow
V = 2527.8 (8) Å3 0.26 × 0.23 × 0.21 mm
Z = 4

Data collection

Bruker SMART APEX CCD diffractometer 3235 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.056
graphite θmax = 27.7°, θmin = 2.3°
ω scans h = −23→21
19483 measured reflections k = −11→10
5385 independent reflections l = −20→20

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.081 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.187 H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0715P)2 + 0.6524P] where P = (Fo2 + 2Fc2)/3
5385 reflections (Δ/σ)max < 0.001
334 parameters Δρmax = 0.32 e Å3
0 restraints Δρmin = −0.29 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
O1 0.16505 (12) 0.9901 (2) 0.43401 (14) 0.0741 (6)
O2 0.33486 (19) 0.5848 (4) 0.2575 (2) 0.0838 (10) 0.70
O3 0.3644 (5) 0.5232 (10) 0.3459 (6) 0.093 (3) 0.30
N1 0.27775 (12) 0.6798 (2) 0.34371 (15) 0.0527 (6)
N2 0.32788 (19) 0.5919 (4) 0.3247 (3) 0.0898 (11)
N4 0.35556 (12) 0.9558 (2) 0.38245 (13) 0.0536 (6)
H4 0.3933 0.9259 0.3653 0.064*
C2 0.27407 (15) 0.6783 (3) 0.43486 (18) 0.0516 (7)
H2 0.3192 0.6290 0.4687 0.062*
C3 0.34747 (15) 0.9322 (3) 0.47096 (17) 0.0543 (7)
H3 0.3419 1.0322 0.4953 0.065*
C5 0.29317 (15) 1.0350 (3) 0.32634 (18) 0.0545 (7)
H5 0.2862 1.1294 0.3558 0.065*
C6 0.22947 (14) 0.7796 (3) 0.27724 (17) 0.0503 (7)
H6 0.2550 0.7961 0.2311 0.060*
C7 0.22234 (15) 0.9354 (3) 0.31808 (18) 0.0540 (7)
H7 0.1799 0.9887 0.2809 0.065*
C8 0.27560 (15) 0.8422 (3) 0.46805 (18) 0.0515 (7)
H8 0.2679 0.8404 0.5271 0.062*
C9 0.21246 (16) 0.9267 (3) 0.40905 (19) 0.0549 (7)
C13 0.20946 (16) 0.5843 (3) 0.44686 (19) 0.0580 (7)
C14 0.16836 (19) 0.6217 (4) 0.5048 (2) 0.0810 (10)
H14 0.1786 0.7108 0.5370 0.097*
C15 0.1124 (2) 0.5289 (5) 0.5158 (3) 0.1094 (14)
H15 0.0856 0.5562 0.5555 0.131*
C16 0.0954 (2) 0.3983 (5) 0.4698 (4) 0.1124 (15)
H16 0.0572 0.3367 0.4774 0.135*
C17 0.1357 (2) 0.3594 (4) 0.4123 (3) 0.0961 (13)
H17 0.1248 0.2701 0.3805 0.115*
C18 0.19191 (18) 0.4497 (3) 0.4006 (2) 0.0742 (9)
H18 0.2187 0.4207 0.3611 0.089*
C19 0.15692 (15) 0.7006 (3) 0.23480 (17) 0.0542 (7)
C20 0.09218 (17) 0.7261 (4) 0.2579 (2) 0.0790 (10)
H20 0.0910 0.7970 0.3010 0.095*
C21 0.0286 (2) 0.6478 (6) 0.2178 (3) 0.1031 (13)
H21 −0.0146 0.6645 0.2352 0.124*
C22 0.0291 (2) 0.5462 (5) 0.1529 (3) 0.1059 (14)
H22 −0.0141 0.4959 0.1250 0.127*
C23 0.0928 (2) 0.5184 (4) 0.1291 (2) 0.0902 (11)
H23 0.0934 0.4483 0.0853 0.108*
C24 0.15639 (18) 0.5950 (4) 0.1703 (2) 0.0703 (9)
H24 0.1999 0.5748 0.1543 0.084*
C25 0.30623 (15) 1.0759 (3) 0.23874 (17) 0.0511 (7)
C26 0.26664 (17) 1.1952 (3) 0.1924 (2) 0.0643 (8)
H26 0.2324 1.2468 0.2151 0.077*
C27 0.27791 (18) 1.2380 (3) 0.1124 (2) 0.0707 (9)
H27 0.2507 1.3171 0.0810 0.085*
C28 0.32896 (18) 1.1636 (3) 0.0797 (2) 0.0661 (8)
H28 0.3372 1.1932 0.0265 0.079*
C29 0.36835 (16) 1.0447 (3) 0.12552 (18) 0.0597 (8)
H29 0.4033 0.9944 0.1033 0.072*
C30 0.35600 (15) 1.0001 (3) 0.20431 (18) 0.0562 (7)
H30 0.3817 0.9180 0.2342 0.067*
C31 0.41479 (15) 0.8592 (3) 0.53034 (17) 0.0544 (7)
C32 0.42814 (19) 0.8818 (4) 0.6201 (2) 0.0715 (9)
H32 0.3973 0.9457 0.6414 0.086*
C33 0.4857 (2) 0.8118 (5) 0.6777 (2) 0.0869 (11)
H33 0.4932 0.8268 0.7376 0.104*
C34 0.53198 (19) 0.7201 (4) 0.6469 (3) 0.0856 (11)
H34 0.5714 0.6729 0.6858 0.103*
C35 0.52064 (18) 0.6971 (4) 0.5588 (2) 0.0773 (9)
H35 0.5525 0.6347 0.5381 0.093*
C36 0.46200 (17) 0.7664 (3) 0.5005 (2) 0.0653 (8)
H36 0.4545 0.7501 0.4408 0.078*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0797 (15) 0.0625 (13) 0.0918 (15) 0.0167 (12) 0.0435 (12) −0.0036 (11)
O2 0.084 (2) 0.102 (3) 0.073 (2) 0.0220 (19) 0.035 (2) −0.008 (2)
O3 0.071 (6) 0.098 (7) 0.104 (7) 0.057 (5) 0.010 (5) −0.026 (5)
N1 0.0479 (13) 0.0444 (13) 0.0656 (15) 0.0035 (11) 0.0142 (11) −0.0147 (11)
N2 0.061 (2) 0.080 (2) 0.138 (3) 0.0025 (17) 0.043 (2) −0.046 (2)
N4 0.0585 (14) 0.0537 (13) 0.0498 (13) 0.0027 (11) 0.0160 (11) 0.0018 (10)
C2 0.0512 (16) 0.0430 (15) 0.0568 (16) 0.0047 (12) 0.0065 (12) −0.0032 (12)
C3 0.0674 (19) 0.0408 (15) 0.0549 (17) −0.0088 (13) 0.0158 (14) −0.0089 (12)
C5 0.0640 (18) 0.0404 (14) 0.0599 (17) 0.0002 (13) 0.0170 (14) −0.0034 (13)
C6 0.0507 (16) 0.0524 (16) 0.0493 (15) −0.0006 (13) 0.0153 (12) −0.0047 (12)
C7 0.0532 (17) 0.0478 (16) 0.0607 (17) 0.0107 (13) 0.0141 (13) 0.0007 (13)
C8 0.0606 (17) 0.0444 (15) 0.0523 (16) 0.0012 (13) 0.0191 (13) −0.0053 (12)
C9 0.0620 (18) 0.0377 (14) 0.0709 (19) −0.0018 (13) 0.0276 (15) −0.0084 (13)
C13 0.0533 (18) 0.0453 (16) 0.0697 (19) 0.0009 (13) 0.0050 (15) 0.0067 (14)
C14 0.075 (2) 0.068 (2) 0.108 (3) −0.0119 (18) 0.038 (2) 0.0035 (19)
C15 0.087 (3) 0.107 (3) 0.147 (4) −0.019 (3) 0.053 (3) 0.012 (3)
C16 0.074 (3) 0.093 (3) 0.162 (5) −0.028 (2) 0.017 (3) 0.031 (3)
C17 0.079 (3) 0.056 (2) 0.132 (4) −0.022 (2) −0.012 (2) 0.009 (2)
C18 0.073 (2) 0.0497 (18) 0.089 (2) −0.0035 (16) 0.0001 (17) 0.0031 (16)
C19 0.0469 (16) 0.0601 (17) 0.0524 (16) −0.0047 (13) 0.0067 (13) 0.0097 (14)
C20 0.0501 (19) 0.103 (3) 0.079 (2) 0.0021 (18) 0.0086 (16) 0.004 (2)
C21 0.053 (2) 0.148 (4) 0.101 (3) −0.005 (2) 0.006 (2) 0.023 (3)
C22 0.074 (3) 0.123 (4) 0.102 (3) −0.043 (3) −0.013 (2) 0.024 (3)
C23 0.086 (3) 0.089 (3) 0.083 (2) −0.032 (2) 0.000 (2) −0.005 (2)
C24 0.076 (2) 0.069 (2) 0.0625 (19) −0.0207 (17) 0.0114 (16) −0.0060 (16)
C25 0.0558 (17) 0.0409 (14) 0.0543 (16) −0.0061 (13) 0.0098 (13) 0.0000 (12)
C26 0.071 (2) 0.0507 (17) 0.073 (2) 0.0058 (15) 0.0221 (16) 0.0036 (15)
C27 0.086 (2) 0.0535 (18) 0.072 (2) 0.0068 (17) 0.0191 (18) 0.0160 (16)
C28 0.081 (2) 0.0608 (19) 0.0581 (18) −0.0090 (17) 0.0204 (16) 0.0047 (15)
C29 0.0651 (19) 0.0565 (18) 0.0562 (18) −0.0012 (15) 0.0130 (14) −0.0037 (14)
C30 0.0600 (18) 0.0480 (16) 0.0574 (17) 0.0004 (14) 0.0087 (14) −0.0002 (13)
C31 0.0575 (18) 0.0530 (16) 0.0503 (16) −0.0200 (14) 0.0089 (13) −0.0020 (13)
C32 0.075 (2) 0.079 (2) 0.0576 (19) −0.0224 (18) 0.0117 (17) −0.0106 (16)
C33 0.080 (3) 0.113 (3) 0.056 (2) −0.040 (2) −0.0030 (19) 0.004 (2)
C34 0.064 (2) 0.096 (3) 0.082 (3) −0.028 (2) −0.0077 (19) 0.020 (2)
C35 0.061 (2) 0.078 (2) 0.088 (3) −0.0081 (17) 0.0083 (18) 0.0080 (19)
C36 0.0650 (19) 0.068 (2) 0.0611 (18) −0.0108 (17) 0.0129 (16) −0.0003 (16)

Geometric parameters (Å, °)

O1—C9 1.198 (3) C17—H17 0.9300
O2—N2 1.106 (4) C18—H18 0.9300
O2—O3 1.471 (10) C19—C20 1.370 (4)
O3—N2 0.912 (7) C19—C24 1.380 (4)
N1—N2 1.310 (4) C20—C21 1.383 (5)
N1—C2 1.460 (3) C20—H20 0.9300
N1—C6 1.488 (3) C21—C22 1.365 (6)
N4—C5 1.454 (3) C21—H21 0.9300
N4—C3 1.460 (3) C22—C23 1.360 (5)
N4—H4 0.8600 C22—H22 0.9300
C2—C13 1.518 (4) C23—C24 1.381 (4)
C2—C8 1.537 (3) C23—H23 0.9300
C2—H2 0.9800 C24—H24 0.9300
C3—C31 1.511 (4) C25—C30 1.368 (4)
C3—C8 1.553 (4) C25—C26 1.385 (4)
C3—H3 0.9800 C26—C27 1.387 (4)
C5—C25 1.510 (4) C26—H26 0.9300
C5—C7 1.569 (4) C27—C28 1.364 (4)
C5—H5 0.9800 C27—H27 0.9300
C6—C19 1.522 (4) C28—C29 1.378 (4)
C6—C7 1.541 (4) C28—H28 0.9300
C6—H6 0.9800 C29—C30 1.381 (4)
C7—C9 1.498 (4) C29—H29 0.9300
C7—H7 0.9800 C30—H30 0.9300
C8—C9 1.505 (4) C31—C36 1.374 (4)
C8—H8 0.9800 C31—C32 1.391 (4)
C13—C14 1.378 (4) C32—C33 1.369 (5)
C13—C18 1.390 (4) C32—H32 0.9300
C14—C15 1.376 (5) C33—C34 1.364 (5)
C14—H14 0.9300 C33—H33 0.9300
C15—C16 1.357 (6) C34—C35 1.369 (5)
C15—H15 0.9300 C34—H34 0.9300
C16—C17 1.365 (6) C35—C36 1.384 (4)
C16—H16 0.9300 C35—H35 0.9300
C17—C18 1.370 (5) C36—H36 0.9300
N2—O3—O2 48.6 (5) C16—C17—C18 121.2 (4)
N2—N1—C2 115.9 (3) C16—C17—H17 119.4
N2—N1—C6 122.1 (3) C18—C17—H17 119.4
C2—N1—C6 122.0 (2) C17—C18—C13 120.9 (4)
O3—N2—O2 93.1 (7) C17—C18—H18 119.6
O3—N2—N1 145.5 (9) C13—C18—H18 119.6
O2—N2—N1 121.4 (5) C20—C19—C24 117.8 (3)
C5—N4—C3 113.0 (2) C20—C19—C6 123.9 (3)
C5—N4—H4 123.5 C24—C19—C6 118.2 (3)
C3—N4—H4 123.5 C19—C20—C21 120.9 (4)
N1—C2—C13 111.5 (2) C19—C20—H20 119.6
N1—C2—C8 109.1 (2) C21—C20—H20 119.6
C13—C2—C8 114.7 (2) C22—C21—C20 120.2 (4)
N1—C2—H2 107.0 C22—C21—H21 119.9
C13—C2—H2 107.0 C20—C21—H21 119.9
C8—C2—H2 107.0 C23—C22—C21 120.1 (4)
N4—C3—C31 112.5 (2) C23—C22—H22 120.0
N4—C3—C8 110.2 (2) C21—C22—H22 120.0
C31—C3—C8 112.3 (2) C22—C23—C24 119.5 (4)
N4—C3—H3 107.2 C22—C23—H23 120.3
C31—C3—H3 107.2 C24—C23—H23 120.3
C8—C3—H3 107.2 C23—C24—C19 121.6 (3)
N4—C5—C25 112.5 (2) C23—C24—H24 119.2
N4—C5—C7 108.2 (2) C19—C24—H24 119.2
C25—C5—C7 112.9 (2) C30—C25—C26 119.3 (3)
N4—C5—H5 107.7 C30—C25—C5 122.2 (2)
C25—C5—H5 107.7 C26—C25—C5 118.5 (3)
C7—C5—H5 107.7 C25—C26—C27 120.3 (3)
N1—C6—C19 110.7 (2) C25—C26—H26 119.9
N1—C6—C7 109.6 (2) C27—C26—H26 119.9
C19—C6—C7 115.5 (2) C28—C27—C26 119.8 (3)
N1—C6—H6 106.8 C28—C27—H27 120.1
C19—C6—H6 106.8 C26—C27—H27 120.1
C7—C6—H6 106.8 C27—C28—C29 120.1 (3)
C9—C7—C6 113.7 (2) C27—C28—H28 120.0
C9—C7—C5 104.9 (2) C29—C28—H28 120.0
C6—C7—C5 112.0 (2) C28—C29—C30 120.1 (3)
C9—C7—H7 108.7 C28—C29—H29 120.0
C6—C7—H7 108.7 C30—C29—H29 120.0
C5—C7—H7 108.7 C25—C30—C29 120.4 (3)
C9—C8—C2 108.2 (2) C25—C30—H30 119.8
C9—C8—C3 107.6 (2) C29—C30—H30 119.8
C2—C8—C3 115.7 (2) C36—C31—C32 118.1 (3)
C9—C8—H8 108.4 C36—C31—C3 123.3 (3)
C2—C8—H8 108.4 C32—C31—C3 118.5 (3)
C3—C8—H8 108.4 C33—C32—C31 121.4 (3)
O1—C9—C7 125.1 (3) C33—C32—H32 119.3
O1—C9—C8 124.0 (3) C31—C32—H32 119.3
C7—C9—C8 110.6 (2) C34—C33—C32 119.6 (3)
C14—C13—C18 117.2 (3) C34—C33—H33 120.2
C14—C13—C2 123.3 (3) C32—C33—H33 120.2
C18—C13—C2 119.4 (3) C33—C34—C35 120.2 (3)
C13—C14—C15 120.9 (4) C33—C34—H34 119.9
C13—C14—H14 119.6 C35—C34—H34 119.9
C15—C14—H14 119.6 C34—C35—C36 120.2 (3)
C16—C15—C14 121.4 (4) C34—C35—H35 119.9
C16—C15—H15 119.3 C36—C35—H35 119.9
C14—C15—H15 119.3 C31—C36—C35 120.4 (3)
C15—C16—C17 118.4 (4) C31—C36—H36 119.8
C15—C16—H16 120.8 C35—C36—H36 119.8
C17—C16—H16 120.8
O2—O3—N2—N1 178.8 (13) C8—C2—C13—C18 163.9 (2)
O3—O2—N2—N1 −179.2 (9) C18—C13—C14—C15 −0.1 (5)
C2—N1—N2—O3 1.2 (14) C2—C13—C14—C15 −177.2 (3)
C6—N1—N2—O3 178.9 (13) C13—C14—C15—C16 −0.4 (6)
C2—N1—N2—O2 179.8 (3) C14—C15—C16—C17 0.5 (7)
C6—N1—N2—O2 −2.5 (5) C15—C16—C17—C18 −0.2 (6)
N2—N1—C2—C13 −102.7 (3) C16—C17—C18—C13 −0.2 (5)
C6—N1—C2—C13 79.6 (3) C14—C13—C18—C17 0.4 (5)
N2—N1—C2—C8 129.5 (3) C2—C13—C18—C17 177.6 (3)
C6—N1—C2—C8 −48.2 (3) N1—C6—C19—C20 99.8 (3)
C5—N4—C3—C31 −176.2 (2) C7—C6—C19—C20 −25.5 (4)
C5—N4—C3—C8 57.7 (3) N1—C6—C19—C24 −79.0 (3)
C3—N4—C5—C25 172.9 (2) C7—C6—C19—C24 155.7 (3)
C3—N4—C5—C7 −61.8 (3) C24—C19—C20—C21 0.2 (5)
N2—N1—C6—C19 93.7 (3) C6—C19—C20—C21 −178.6 (3)
C2—N1—C6—C19 −88.8 (3) C19—C20—C21—C22 −1.6 (6)
N2—N1—C6—C7 −137.7 (3) C20—C21—C22—C23 1.9 (6)
C2—N1—C6—C7 39.8 (3) C21—C22—C23—C24 −0.7 (6)
N1—C6—C7—C9 −42.0 (3) C22—C23—C24—C19 −0.7 (5)
C19—C6—C7—C9 83.9 (3) C20—C19—C24—C23 0.9 (5)
N1—C6—C7—C5 76.7 (3) C6—C19—C24—C23 179.8 (3)
C19—C6—C7—C5 −157.4 (2) N4—C5—C25—C30 23.0 (3)
N4—C5—C7—C9 63.2 (3) C7—C5—C25—C30 −99.8 (3)
C25—C5—C7—C9 −171.7 (2) N4—C5—C25—C26 −156.5 (2)
N4—C5—C7—C6 −60.6 (3) C7—C5—C25—C26 80.7 (3)
C25—C5—C7—C6 64.6 (3) C30—C25—C26—C27 −0.6 (4)
N1—C2—C8—C9 56.8 (3) C5—C25—C26—C27 178.9 (3)
C13—C2—C8—C9 −69.1 (3) C25—C26—C27—C28 −0.9 (5)
N1—C2—C8—C3 −63.9 (3) C26—C27—C28—C29 1.1 (5)
C13—C2—C8—C3 170.1 (2) C27—C28—C29—C30 0.3 (4)
N4—C3—C8—C9 −55.1 (3) C26—C25—C30—C29 2.0 (4)
C31—C3—C8—C9 178.7 (2) C5—C25—C30—C29 −177.5 (2)
N4—C3—C8—C2 66.0 (3) C28—C29—C30—C25 −1.8 (4)
C31—C3—C8—C2 −60.3 (3) N4—C3—C31—C36 −27.2 (4)
C6—C7—C9—O1 −129.3 (3) C8—C3—C31—C36 97.7 (3)
C5—C7—C9—O1 108.0 (3) N4—C3—C31—C32 155.5 (2)
C6—C7—C9—C8 57.3 (3) C8—C3—C31—C32 −79.5 (3)
C5—C7—C9—C8 −65.3 (3) C36—C31—C32—C33 −1.2 (4)
C2—C8—C9—O1 122.8 (3) C3—C31—C32—C33 176.2 (3)
C3—C8—C9—O1 −111.6 (3) C31—C32—C33—C34 1.2 (5)
C2—C8—C9—C7 −63.8 (3) C32—C33—C34—C35 −0.5 (5)
C3—C8—C9—C7 61.8 (3) C33—C34—C35—C36 −0.2 (5)
N1—C2—C13—C14 −143.8 (3) C32—C31—C36—C35 0.5 (4)
C8—C2—C13—C14 −19.1 (4) C3—C31—C36—C35 −176.8 (3)
N1—C2—C13—C18 39.2 (3) C34—C35—C36—C31 0.2 (5)

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C31–C36 benzene ring.
D—H···A D—H H···A D···A D—H···A
C18—H18···O3 0.93 2.94 3.607 (1) 130
C20—H20···O1 0.93 2.79 3.622 (4) 150
C24—H24···O2 0.93 2.64 3.276 (5) 126
C36—H36···O3 0.93 2.80 3.415 (9) 125
C17—H17···O1i 0.93 2.66 3.311 (4) 128
C22—H22···O1ii 0.93 2.74 3.579 (5) 150
C32—H32···O2iii 0.93 2.43 3.127 (6) 132
C34—H34···O3iv 0.93 2.24 2.878 (1) 125
C29—H29···Cg1v 0.93 2.87 3.677 146

Symmetry codes: (i) x, y−1, z; (ii) −x, y−1/2, −z+1/2; (iii) x, −y+3/2, z+1/2; (iv) −x+1, −y+1, −z+1; (v) x, −y+1/2, z−3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JJ2089).

References

  1. Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  3. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  4. Hemalatha, T. & Nagarajan, S. (2010). J. Mol. Struct. 963, 111–114.
  5. Hofer, O. (1976). Topics in Stereochemistry, edited by N. L. Allinger & E. L. Eliel, p. 9. New York: John Wiley & Sons.
  6. Mulekar, S. V. & Berlin, K. D. (1989). J. Org. Chem. 54, 4758–4767.
  7. Noller, C. R. & Baliah, V. (1948). J. Am. Chem. Soc. 70, 3853–3855. [DOI] [PubMed]
  8. Pandiarajan, K., Sekar, R., Anantharaman, R., Ramalingam, U. & Marko, D. (1991). Indian J. Chem. Sect. B, 30, 490–493.
  9. Ramalingam, K., Berlin, K. D., Sathyamurthy, N. & Sivakumar, R. (1979). J. Org. Chem. 44, 471–477.
  10. Rogers, M. J. & Woodbrey, J. C. (1962). J. Phys. Chem. 66, 540–546.
  11. Sampath, N., Ponnuswamy, M. N. & Nethaji, M. (2005). Mol. Cryst. Liq. Cryst. 442, 31–39.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811022203/jj2089sup1.cif

e-67-o1686-sup1.cif (25.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811022203/jj2089Isup2.hkl

e-67-o1686-Isup2.hkl (258.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811022203/jj2089Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES