Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Jun 11;67(Pt 7):o1616–o1617. doi: 10.1107/S1600536811020460

(2E)-1-(4-Amino­phen­yl)-3-(2,4-dichloro­phen­yl)prop-2-en-1-one

Shailja Singh a, Manavendra K Singh b, Alka Agarwal b, Firasat Hussain c, Satish K Awasthi a,*
PMCID: PMC3152147  PMID: 21837023

Abstract

The title compound, C15H11Cl2NO, is approximately planar (r.m.s. deviation = 0.062 Å) and contains a single C=C double bond in a trans (E) configuration. The crystal packing is stabilized by intermolecular N—H⋯N and N—H⋯O inter­molecular hydrogen bonding.

Related literature

For related flavonoids, see: Bargellini & Marini-Bettolo (1940). For isoflavonoids, see: Nógrádi & Szöllösy (1996). For the biological activities of chalcones, see: Go et al. (2005); Hans et al. (2010); Trivedi et al. (2007); Nielsen et al. (2004). For anti­malarial activity, see: Mishra et al. (2008). For anti­filarial activity, see: Awasthi, Mishra, Dixit et al. (2009). For other chalcone crystal structures and small mol­ecules, see: Fun et al. (2008); Li et al. (2009); Singh et al. (2011). For the synthesis, see: Migrdichian (1957); Awasthi, Mishra, Kumar et al. (2009). For inter­molecular N—H⋯N and N—H⋯O hydrogen bonding, see: Fonar et al. (2001).graphic file with name e-67-o1616-scheme1.jpg

Experimental

Crystal data

  • C15H11Cl2NO

  • M r = 292.15

  • Monoclinic, Inline graphic

  • a = 22.771 (2) Å

  • b = 3.9889 (5) Å

  • c = 14.7848 (18) Å

  • β = 92.401 (12)°

  • V = 1341.7 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.47 mm−1

  • T = 293 K

  • 0.23 × 0.11 × 0.08 mm

Data collection

  • Oxford Diffraction Xcalibur Sapphire3 diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) T min = 0.597, T max = 1.000

  • 5765 measured reflections

  • 2625 independent reflections

  • 1733 reflections with I > 2σ(I)

  • R int = 0.047

  • Standard reflections: 0

Refinement

  • R[F 2 > 2σ(F 2)] = 0.057

  • wR(F 2) = 0.159

  • S = 0.98

  • 2625 reflections

  • 216 parameters

  • All H-atom parameters refined

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.29 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811020460/zj2011sup1.cif

e-67-o1616-sup1.cif (17.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811020460/zj2011Isup2.hkl

e-67-o1616-Isup2.hkl (126.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811020460/zj2011Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O1i 0.78 (3) 2.210 2.977 (4) 171 (3)
N1—H2N1⋯N1ii 0.76 (4) 2.469 3.134 (5) 147 (4)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

SKA is thankful to the University Grants Commission (UGC) [scheme F. No. 37-410/2009(SR)] and the University of Delhi, India, for financial assistance. The authors are highly thankful to the University Sophisticated Instrument Center (USIC), University of Delhi, India, for providing the single-crystal X-ray diffractometer facility.

supplementary crystallographic information

Comment

Chalcones (trans-1,3-diphenyl-2-propen-1-ones) are precursor of various natural products such as flavonoids (Bargellini & Marini-Bettolo, 1940), isoflavanoids (Nógrádi & Szöllösy, 1996) and key intermediates for synthesis of various heterocyclic scaffolds. Chalcone consists of two aromatic rings joined together by a three carbon α, β-unsaturated carbonyl system (Figure 1). These compounds have broad range of biological activities such as anticancer (Go et al., 2005), antimalarial activity (Mishra et al. 2008), anti-TB activity (Hans et al. 2010), antiviral (Trivedi et al., 2007), antibacterial (Nielsen et al., 2004) and more recently antifilarial activity (Awasthi, Mishra, Dixit et al. 2009) etc. Further, SAR on substituted chalcones reveal that presence of α, β-unsaturated ketone is critical for activity in which double bond is in a trans (E)-configuration (Li et al., 2009). The crystal structures of few substituted chalcones have been recently reported (Fun et al., 2008; Li et al., 2009). As a part of our ongoing research work on antimicrobial activities of substituted chalcones and crystal structure analysis of small molecules (Singh et al., 2011), we further explored the possibility of characterization of chalcone in the solid state. We crystallized substituted chalcone (2E)-1-(4-aminophenyl)-4-(2,4-dichlorophenyl) but-2-en-1-one,in the mixture of methanol and acetone at room temperature. In this paper, we report the single-crystal X-ray structure of the title compound and possible role of hydrogen bonding in the structure stabilization. The crystal packing is stabilized by intermolecular hydrogen bonding between N1-H2N1···N1 and N1-H1N1···O1(Fonar et al., 2001).as shown in packing diagram along b axis(figure 2, table 1).The torsion angle between atom C7—C8 - C9—C10 is 177.8 (3)°. The aminophenyl ring, dichlorophenyl ring and central ketone group are in the same plane, thus molecule is planer. The CCDC No. of the crystal is 797089.

Experimental

The synthesis of the title compound was carried out according to the published procedure (Migrdichian 1957; Awasthi, Mishra, Kumar et al., 2009). Briefly, an aqueous solution of sodium hydroxide (10%, 10 ml) was added to a solution of acetlylated 4-aminoacetophenone (1.77 g m, 10 mmol) and 2, 4-dichlorobenzaldehyde (1.73 g m, 10 mmol) in minimum amount of methanol (3–5 ml) at ice cooled flask. The reaction mixture was allowed to draw closer to room temperature and stirred for 18–20 hrs yielded a yellow solid. The completion of the reaction was monitored by thin layer chromatography. After completion of the reaction, the mixture was neutralized with 10% hydrochloric acid in water. The acetyl group was removed by refluxing with HCl/C2H5OH for 4hrs. The product was recrystallized from dry methanol and acetone in 1:1 ratio. After few weeks, light yellow single crystals were obtained. Yield 70%. Rf = 0.64 (CHCl3: MeOH, 99:1). MS (Macromass G) m/z = 292.16 (M+). Elemental analysis (Perkin Elmer): Calcd. for C15 H11 Cl2 NO: C 61.67, H 3.79, Cl 24.26, N 4.79, O 5.48%. Found C 61.70, H 3.81, Cl 24.23, N 4.83, O 5.44%. IR (Perkin Elmer Fourier transform Spectrometer with KBr pellets (cm-1): 3462.18–3369.75 (–NH2), 2925.42- 2851.54 (aromatic), 1704.23 (C=O in conjugation C=C), 1656.19 (C=C str aromatic), 1584.94 (C=C str in conjugation CO—C=C), 1269.49 (C—N str), 1018.68–1105.40 (C—O—C str), C—Cl (867.02–814.49). 13C-NMR (CDCl3, 300 MHz): δ 186.66, 152.16, 136.54, 135.27, 135.13, 131.78, 130.75, 130.22, 129.38, 128.07, 127.03, 126.46, 124.75, 113.20, 113.00. 1HNMR (Brucker AMX, 300 MHz, CDCl3): δ 4. 196 (s, 2H, NH2), δ 6.7 (d, 2H, H2 and H6, J = 8.7 Hz), δ 7.92 (d, 2H, H3 and H5, J = 8.4 Hz), δ 7.46 (d, 1H, Hα, J = 15.6 Hz), δ 8.06 (d, 1H, Hβ, J = 15.6 Hz), δ 7.463 (s, 1H, H'3), δ 7.29 (d, 1H, H'5, J = 6.9 Hz), δ 7.67 (d, 1H, H'6, J = 8.4 Hz).

Refinement

All the H atoms were located from difference Fourier map [range of C—H = 0.81 (4) - 1.10 (3) Å] and N–H = 0.76 (4)–0.78 (4)] and allowed to refine freely.

Figures

Fig. 1.

Fig. 1.

ORTEP diagram of the molecule with thermal ellipsoids drawn at 50% probability level Color code: White: C; red: O; blue: N; white: H; Green: Cl; Green: F

Fig. 2.

Fig. 2.

Packing diagram of molecule viewed through b plane showing Intermolecular hydrogen bonding.

Fig. 3.

Fig. 3.

The formation of the title compound.

Crystal data

C15H11Cl2NO F(000) = 600
Mr = 292.15 Dx = 1.446 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 1458 reflections
a = 22.771 (2) Å θ = 3.0–29.0°
b = 3.9889 (5) Å µ = 0.47 mm1
c = 14.7848 (18) Å T = 293 K
β = 92.401 (12)° Rod, yellow
V = 1341.7 (3) Å3 0.23 × 0.11 × 0.08 mm
Z = 4

Data collection

Oxford Diffraction Xcalibur Sapphire3 diffractometer 2625 independent reflections
Radiation source: fine-focus sealed tube 1733 reflections with I > 2σ(I)
graphite Rint = 0.047
ω scans θmax = 26.0°, θmin = 3.2°
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) h = −25→28
Tmin = 0.597, Tmax = 1.000 k = −3→4
5765 measured reflections l = −17→18

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.159 All H-atom parameters refined
S = 0.98 w = 1/[σ2(Fo2) + (0.0919P)2] where P = (Fo2 + 2Fc2)/3
2625 reflections (Δ/σ)max = 0.003
216 parameters Δρmax = 0.33 e Å3
0 restraints Δρmin = −0.29 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.85377 (14) 0.5099 (8) 0.5485 (2) 0.0466 (8)
C2 0.91136 (15) 0.6162 (9) 0.5505 (2) 0.0496 (8)
C3 0.93472 (13) 0.7698 (8) 0.6273 (2) 0.0454 (8)
C4 0.90165 (14) 0.8197 (8) 0.7010 (2) 0.0465 (8)
C5 0.84351 (14) 0.7060 (8) 0.6984 (2) 0.0440 (7)
C6 0.81845 (12) 0.5488 (7) 0.62200 (19) 0.0376 (7)
C7 0.75725 (13) 0.4285 (8) 0.6200 (2) 0.0434 (8)
C8 0.72868 (14) 0.2879 (9) 0.5517 (2) 0.0452 (8)
C9 0.66735 (13) 0.1629 (7) 0.5571 (2) 0.0403 (7)
C10 0.63905 (12) −0.0047 (7) 0.47851 (18) 0.0334 (6)
C11 0.66507 (13) −0.0353 (8) 0.3948 (2) 0.0408 (7)
C12 0.63760 (13) −0.1948 (8) 0.3229 (2) 0.0421 (7)
C13 0.58122 (12) −0.3296 (7) 0.33087 (19) 0.0344 (7)
C14 0.55456 (13) −0.2959 (8) 0.4125 (2) 0.0384 (7)
C15 0.58231 (13) −0.1377 (8) 0.4847 (2) 0.0392 (7)
N1 0.55305 (14) −0.4825 (8) 0.2576 (2) 0.0443 (7)
O1 0.64210 (10) 0.1991 (6) 0.62783 (15) 0.0604 (7)
Cl1 1.00725 (4) 0.9059 (2) 0.63141 (7) 0.0648 (3)
Cl2 0.80366 (5) 0.7782 (3) 0.79390 (6) 0.0786 (4)
H1 0.8413 (15) 0.404 (8) 0.482 (2) 0.057 (9)*
H1N1 0.5731 (15) −0.545 (9) 0.220 (2) 0.041 (10)*
H2 0.9359 (16) 0.602 (9) 0.509 (2) 0.058 (10)*
H2N1 0.5329 (19) −0.618 (10) 0.275 (3) 0.067 (15)*
H4 0.9136 (16) 0.923 (9) 0.749 (3) 0.065 (11)*
H7 0.7369 (18) 0.430 (10) 0.674 (3) 0.078 (12)*
H8 0.7462 (17) 0.234 (9) 0.505 (3) 0.065 (12)*
H11 0.7039 (18) 0.068 (10) 0.384 (3) 0.075 (11)*
H12 0.6574 (14) −0.213 (7) 0.271 (2) 0.042 (8)*
H14 0.5245 (17) −0.397 (9) 0.422 (2) 0.060 (11)*
H15 0.5611 (13) −0.119 (7) 0.537 (2) 0.038 (8)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0408 (17) 0.055 (2) 0.0431 (18) −0.0017 (16) −0.0039 (14) −0.0028 (16)
C2 0.0424 (18) 0.056 (2) 0.051 (2) −0.0029 (16) 0.0079 (16) −0.0013 (17)
C3 0.0372 (15) 0.0416 (17) 0.056 (2) −0.0002 (14) −0.0094 (15) 0.0068 (15)
C4 0.0461 (18) 0.0424 (19) 0.050 (2) −0.0059 (15) −0.0119 (16) −0.0010 (16)
C5 0.0446 (17) 0.0468 (18) 0.0400 (16) −0.0010 (15) −0.0043 (14) −0.0017 (14)
C6 0.0349 (15) 0.0369 (16) 0.0403 (16) −0.0002 (13) −0.0054 (13) 0.0005 (13)
C7 0.0380 (16) 0.0498 (19) 0.0424 (17) −0.0030 (15) −0.0007 (14) −0.0002 (15)
C8 0.0368 (16) 0.057 (2) 0.0421 (18) −0.0077 (15) 0.0036 (15) −0.0031 (16)
C9 0.0370 (15) 0.0422 (18) 0.0414 (17) 0.0001 (14) −0.0004 (14) 0.0033 (14)
C10 0.0268 (13) 0.0373 (16) 0.0361 (15) 0.0007 (12) −0.0003 (11) 0.0033 (12)
C11 0.0286 (14) 0.0513 (19) 0.0426 (17) −0.0049 (14) 0.0017 (13) 0.0028 (15)
C12 0.0338 (15) 0.057 (2) 0.0362 (16) 0.0001 (15) 0.0057 (13) −0.0007 (15)
C13 0.0303 (14) 0.0349 (16) 0.0374 (15) 0.0042 (12) −0.0043 (12) 0.0009 (12)
C14 0.0275 (15) 0.0425 (18) 0.0452 (17) −0.0054 (14) 0.0007 (13) 0.0031 (14)
C15 0.0333 (15) 0.0470 (19) 0.0378 (16) 0.0013 (14) 0.0068 (13) 0.0016 (14)
N1 0.0372 (15) 0.054 (2) 0.0409 (16) −0.0038 (15) −0.0023 (13) −0.0097 (15)
O1 0.0515 (13) 0.0868 (19) 0.0436 (13) −0.0177 (13) 0.0096 (11) −0.0133 (12)
Cl1 0.0387 (5) 0.0691 (6) 0.0857 (7) −0.0114 (4) −0.0079 (4) 0.0039 (5)
Cl2 0.0705 (6) 0.1094 (9) 0.0565 (6) −0.0218 (6) 0.0104 (5) −0.0299 (6)

Geometric parameters (Å, °)

C1—C2 1.377 (5) C9—O1 1.223 (4)
C1—C6 1.388 (4) C9—C10 1.466 (4)
C1—H1 1.10 (3) C10—C11 1.399 (4)
C2—C3 1.377 (5) C10—C15 1.403 (4)
C2—H2 0.85 (4) C11—C12 1.368 (4)
C3—C4 1.365 (5) C11—H11 0.99 (4)
C3—Cl1 1.737 (3) C12—C13 1.401 (4)
C4—C5 1.399 (5) C12—H12 0.91 (3)
C4—H4 0.86 (4) C13—C14 1.381 (4)
C5—C6 1.393 (4) C13—N1 1.378 (4)
C5—Cl2 1.734 (3) C14—C15 1.371 (4)
C6—C7 1.473 (4) C14—H14 0.81 (4)
C7—C8 1.305 (4) C15—H15 0.93 (3)
C7—H7 0.94 (4) N1—H1N1 0.78 (4)
C8—C9 1.488 (4) N1—H2N1 0.76 (4)
C8—H8 0.84 (4)
C2—C1—C6 122.1 (3) O1—C9—C10 121.7 (3)
C2—C1—H1 110.2 (18) O1—C9—C8 118.8 (3)
C6—C1—H1 127.6 (18) C10—C9—C8 119.5 (3)
C3—C2—C1 119.3 (3) C11—C10—C15 116.7 (3)
C3—C2—H2 113 (2) C11—C10—C9 123.5 (3)
C1—C2—H2 128 (2) C15—C10—C9 119.7 (3)
C4—C3—C2 121.1 (3) C12—C11—C10 122.1 (3)
C4—C3—Cl1 118.8 (2) C12—C11—H11 117 (2)
C2—C3—Cl1 120.1 (3) C10—C11—H11 121 (2)
C3—C4—C5 119.0 (3) C11—C12—C13 120.2 (3)
C3—C4—H4 125 (3) C11—C12—H12 117.7 (19)
C5—C4—H4 116 (3) C13—C12—H12 122.0 (19)
C6—C5—C4 121.5 (3) C14—C13—N1 121.6 (3)
C6—C5—Cl2 121.6 (2) C14—C13—C12 118.3 (3)
C4—C5—Cl2 116.8 (2) N1—C13—C12 120.1 (3)
C1—C6—C5 117.0 (3) C15—C14—C13 121.4 (3)
C1—C6—C7 121.8 (3) C15—C14—H14 117 (3)
C5—C6—C7 121.2 (3) C13—C14—H14 120 (3)
C8—C7—C6 126.6 (3) C14—C15—C10 121.2 (3)
C8—C7—H7 114 (2) C14—C15—H15 116.4 (18)
C6—C7—H7 119 (2) C10—C15—H15 122.4 (18)
C7—C8—C9 122.8 (3) C13—N1—H1N1 116 (2)
C7—C8—H8 120 (3) C13—N1—H2N1 109 (3)
C9—C8—H8 116 (3) H1N1—N1—H2N1 113 (4)
C6—C1—C2—C3 −0.8 (5) C7—C8—C9—O1 1.5 (5)
C1—C2—C3—C4 −0.4 (5) C7—C8—C9—C10 −177.5 (3)
C1—C2—C3—Cl1 180.0 (2) O1—C9—C10—C11 176.4 (3)
C2—C3—C4—C5 1.3 (5) C8—C9—C10—C11 −4.6 (4)
Cl1—C3—C4—C5 −179.1 (2) O1—C9—C10—C15 −2.1 (4)
C3—C4—C5—C6 −1.2 (5) C8—C9—C10—C15 176.8 (3)
C3—C4—C5—Cl2 −179.8 (2) C15—C10—C11—C12 −1.8 (4)
C2—C1—C6—C5 0.9 (5) C9—C10—C11—C12 179.7 (3)
C2—C1—C6—C7 −178.8 (3) C10—C11—C12—C13 1.0 (5)
C4—C5—C6—C1 0.1 (5) C11—C12—C13—C14 0.2 (4)
Cl2—C5—C6—C1 178.6 (2) C11—C12—C13—N1 178.3 (3)
C4—C5—C6—C7 179.7 (3) N1—C13—C14—C15 −178.7 (3)
Cl2—C5—C6—C7 −1.7 (4) C12—C13—C14—C15 −0.6 (4)
C1—C6—C7—C8 −2.6 (5) C13—C14—C15—C10 −0.2 (5)
C5—C6—C7—C8 177.8 (3) C11—C10—C15—C14 1.4 (4)
C6—C7—C8—C9 177.8 (3) C9—C10—C15—C14 180.0 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1N1···O1i 0.78 (3) 2.210 2.977 (4) 171 (3)
N1—H2N1···N1ii 0.76 (4) 2.469 3.134 (5) 147 (4)

Symmetry codes: (i) x, −y−1/2, z+1/2; (ii) −x+1, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZJ2011).

References

  1. Awasthi, S. K., Mishra, N., Dixit, S. K., Singh, A., Yadav, M., Yadav, S. S. & Rathaur, S. (2009). Am. J. Trop. Med. Hyg 80, 764–768. [PubMed]
  2. Awasthi, S. K., Mishra, N., Kumar, B., Sharma, M., Bhattacharya, A., Mishra, L. C. & Bhasin, V. K. (2009). Med. Chem. Res. 18, 407–420.
  3. Bargellini, G. & Marini-Bettolo, G. B. (1940). Gazz. Chim. Ital. 70, 170–178.
  4. Fonar, M. S., Simonov, Yu. A., Kravtsov, V. H., Lipkowski, J., Javolowski, A. A. & Ganin, É. V. (2001). J. Struct. Chem. 42, 459–469.
  5. Fun, H.-K., Patil, P. S., Dharmaprakash, S. M. & Chantrapromma, S. (2008). Acta Cryst. E64, o1464. [DOI] [PMC free article] [PubMed]
  6. Go, M. L., Wu, X. & Liu, X. L. (2005). Curr. Med. Chem. 12, 483–499.
  7. Hans, R. H., Guantai, E. M., Lategan, C., Smith, P. J., Wan, B., Franzblau, S. G., Gut, J., Rosenthal, P. J. & Chibale, K. (2010). Bioorg. Med. Chem. Lett. 20, 942–944. [DOI] [PubMed]
  8. Li, H., Kamath, K. P., Narayana, B., Yathirajan, H. S. & Harrison, W. T. A. (2009). Acta Cryst. E65, o1915. [DOI] [PMC free article] [PubMed]
  9. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  10. Migrdichian, V. (1957). Organic Synthesis, Vol. 1, pp.171–173. New York: Reinhold Publishing Co.
  11. Mishra, N., Arora, P., Kumar, B., Mishra, L. C., Bhattacharya, A., Awasthi, S. K. & Bhasin, V. K. (2008). Eur. J. Med. Chem. 43, 1530–1535. [DOI] [PubMed]
  12. Nielsen, S. F., Bosen, T., Larsen, M., Schonning, K. & Kromann, H. (2004). Bioorg. Med. Chem. 12, 3047–3054. [DOI] [PubMed]
  13. Nógrádi, M. & Szöllösy, Á. (1996). Liebigs Ann. Chem. 10, 1651–1652.
  14. Oxford Diffraction (2009). CrysAlis PRO Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.
  15. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  16. Singh, M. K., Agarwal, A., Mahawar, C. & Awasthi, S. K. (2011). Acta Cryst. E67, o1382. [DOI] [PMC free article] [PubMed]
  17. Trivedi, J. C., Bariwal, J. B., Upadhyay, K. D., Naliapara, Y. T., Soshi, S. K., Pannecouque, C. C., De Clercq, E. & Shah, A. K. (2007). Tetrahedron Lett. 48, 8472–8474.
  18. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811020460/zj2011sup1.cif

e-67-o1616-sup1.cif (17.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811020460/zj2011Isup2.hkl

e-67-o1616-Isup2.hkl (126.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811020460/zj2011Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES