Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1969 Jun;98(3):1005–1010. doi: 10.1128/jb.98.3.1005-1010.1969

Role of Phosphoenolpyruvate Carboxylation in Acetobacter xylinum

Moshe Benziman 1
PMCID: PMC315287  PMID: 5788692

Abstract

Glucose-grown cells of Acetobacter xylinum oxidized acetate only when the reaction mixture was supplemented with catalytic quantities of glucose or intermediates of the citrate cycle. Extracts, prepared by sonic treatment, catalyzed the formation of oxalacetate when incubated with phosphoenolpyruvate (PEP) and bicarbonate. Oxalacetate was not formed in the presence of pyruvate plus adenosine triphosphate. The ability to promote carboxylation of PEP was lower in succinate-grown cells than in glucose-grown cells. PEP carboxylase, partially purified from extracts by ammonium sulfate fractionation, catalyzed the stoichiometric formation of oxalacetate and inorganic phosphate from PEP and bicarbonate. The enzyme was not affected by acetyl-coenzyme A or inorganic phosphate. It was inhibited by adenosine diphosphate in a manner competitive with PEP (K1 = 1.3 mm) and by dicarboxylic acids of the citrate cycle; of these, succinate was the most potent inhibitor. It is suggested that the physiological role of PEP carboxylase in A. xylinum is to affect the net formation of C4 acids from C3 precursors, which are essential for the maintainance of the citrate cycle during growth on glucose. The relationship of PEP carboxylase to other enzyme systems metabolizing PEP and oxalacetate in A. xylinum is discussed.

Full text

PDF
1005

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ashworth J. M., Kornberg H. L. The anaplerotic fixation of carbon dioxide by Escherichia coli. Proc R Soc Lond B Biol Sci. 1966 Aug 16;165(999):179–188. doi: 10.1098/rspb.1966.0063. [DOI] [PubMed] [Google Scholar]
  2. BENZIMAN M., ABELIOVITZ A. METABOLISM OF DICARBOXYLIC ACIDS IN ACETOBACTER XYLINUM. J Bacteriol. 1964 Feb;87:270–277. doi: 10.1128/jb.87.2.270-277.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. BENZIMAN M., BURGER-RACHAMIMOV H. Synthesis of cellulose from pyruvate by succinate-grown cells of Acetobacter xylinum. J Bacteriol. 1962 Oct;84:625–630. doi: 10.1128/jb.84.4.625-630.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. BENZIMAN M., HELLER N. OXALOACETATE DECARBOXYLATION AND OXALOACETATE-CARBON DIOXIDE EXCHANGE IN ACETOBACTER XYLINUM. J Bacteriol. 1964 Dec;88:1678–1687. doi: 10.1128/jb.88.6.1678-1687.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Benziman M. Implication of the direct phosphorylation of pyruvate in cellulose synthesis by Aceto-bacter xylinum. Biochem Biophys Res Commun. 1966 Aug 12;24(3):391–394. doi: 10.1016/0006-291x(66)90170-7. [DOI] [PubMed] [Google Scholar]
  6. Benziman M., Levy L. Phosphorylation coupled to malate oxidation in Acetobacter xylinum. Biochem Biophys Res Commun. 1966 Jul 20;24(2):214–217. doi: 10.1016/0006-291x(66)90722-4. [DOI] [PubMed] [Google Scholar]
  7. Cánovas J. L., Kornberg H. L. Properties and regulation of phosphopyruvate carboxylase activity in Escherichia coli. Proc R Soc Lond B Biol Sci. 1966 Aug 16;165(999):189–205. doi: 10.1098/rspb.1966.0064. [DOI] [PubMed] [Google Scholar]
  8. GROMET-ELHANAN Z., HESTRIN S. Synthesis of cellulose by Acetobacter xylinum. VI. Growth on citric acid-cycle intermediates. J Bacteriol. 1963 Feb;85:284–292. doi: 10.1128/jb.85.2.284-292.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. HORTON A. A., KORNBERG H. L. OXALOACETATE 4-CARBOXY-LYASE FROM PSEUDOMONAS OVALIS CHESTER. Biochim Biophys Acta. 1964 Aug 26;89:381–383. doi: 10.1016/0926-6569(64)90236-6. [DOI] [PubMed] [Google Scholar]
  10. KORNBERG H. L., ELSDEN S. R. The metabolism of 2-carbon compounds by microorganisms. Adv Enzymol Relat Subj Biochem. 1961;23:401–470. doi: 10.1002/9780470122686.ch8. [DOI] [PubMed] [Google Scholar]
  11. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  12. Large P. J., Peel D., Quayle J. R. Microbial growth on C(1) compounds. 4. Carboxylation of phosphoenolpyruvate in methanol-grown Pseudomonas AM1. Biochem J. 1962 Oct;85(1):243–250. doi: 10.1042/bj0850243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Nishikido T., Izui K., Iwatani A., Katsuki H., Tanaka S. Inhibition of the carbon dioxide fixation of E. coli by the compounds related to TCA cycle. Biochem Biophys Res Commun. 1965 Oct 26;21(2):94–99. doi: 10.1016/0006-291x(65)90092-6. [DOI] [PubMed] [Google Scholar]
  14. SCHRAMM M., GROMET Z., HESTRIN S. Synthesis of cellulose by Acetobacter Xylinum. 3. Substrates and inhibitors. Biochem J. 1957 Dec;67(4):669–679. doi: 10.1042/bj0670669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. SEUBERT W., REMBERGER U. [Purification and mechanism of action of pyruvate carboxylase from Pseudomonas citronellolis]. Biochem Z. 1961;334:401–414. [PubMed] [Google Scholar]
  16. STADTMAN E. R., LIPMANN F. Acetyl phosphate synthesis by reaction of isopropenyl acetate and phosphoric acid. J Biol Chem. 1950 Aug;185(2):549–551. [PubMed] [Google Scholar]
  17. STOUTHAMER A. H., VAN BOOMJ, BASTIAANSE A. J. METABOLISM OF C2 COMPOUNDS IN ACETOBACTER ACETI. Antonie Van Leeuwenhoek. 1963;29:393–406. doi: 10.1007/BF02046092. [DOI] [PubMed] [Google Scholar]
  18. THEODORE T. S., ENGLESBERG E. MUTANT OF SALMONELLA TYPHIMURIUM DEFICIENT IN THE CARBON DIOXIDE-FIXING ENZYME PHOSPHOENOLPYRUVIC CARBOXYLASE. J Bacteriol. 1964 Oct;88:946–955. doi: 10.1128/jb.88.4.946-955.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Wood H. G., Utter M. F. The role of CO2 fixation in metabolism. Essays Biochem. 1965;1:1–27. [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES