Abstract
Octanoic acid inhibits, in vitro, the bacterial enzymes glucose-6-phosphate dehydrogenase, phosphofructokinase, pyruvate kinase, fumarase, lactate dehydrogenase, and the malic enzyme of Arthrobacter crystallopoietes. The free fatty acid appears to act as an inhibitor of lipogenesis, although it does not affect the rate of gluconeogenesis. To demonstrate that this inhibition may be of physiological significance in vivo, those enzymes not involved in lipogenesis, such as fructose-1, 6-diphosphatase, phosphoglucomutase, phosphohexoisomerase, aconitase, nicotinamide adenine dinucleotide phosphate (NADP) isocitrate dehydrogenase, NADP glutamate dehydrogenase, malate dehydrogenase, and isocitrate lyase, were assayed and found not to be inhibited by the free fatty acid.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baldwin R. L., Milligan L. P. Enzymatic changes associated with the initiation and maintenance of lactation in the rat. J Biol Chem. 1966 May 10;241(9):2058–2066. [PubMed] [Google Scholar]
- CLARK J. B., ALDRIDGE C. Fat bodies in Nocardia corallina. J Bacteriol. 1960 May;79:756–757. doi: 10.1128/jb.79.5.756-757.1960. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Friedmann B., Goodman E. H., Jr, Weinhouse S. Effects of insulin and fatty acids on gluconeogenesis in the rat. J Biol Chem. 1967 Aug 25;242(16):3620–3627. [PubMed] [Google Scholar]
- HOGG J. F., KORNBERG H. L. The metabolism of C2-compounds in micro-organisms. 9. Role of the glyoxylate cycle in protozoal glyconeogenesis. Biochem J. 1963 Mar;86:462–468. doi: 10.1042/bj0860462. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hanson R. S., Cox D. P. Effect of different nutritional conditions on the synthesis of tricarboxylic acid cycle enzymes. J Bacteriol. 1967 Jun;93(6):1777–1787. doi: 10.1128/jb.93.6.1777-1787.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harada K., Wolfe R. G. Malic dehydrogenase. VI. A kinetic study of hydroxymalonate inhibition. J Biol Chem. 1968 Aug 10;243(15):4123–4130. [PubMed] [Google Scholar]
- Hsu R. Y., Lardy H. A., Cleland W. W. Pigeon liver malic enzyme. V. Kinetic studies. J Biol Chem. 1967 Nov 25;242(22):5315–5322. [PubMed] [Google Scholar]
- PANDE S. V., KHAN R. P., VENKITASUBRAMANIAN T. A. NICOTINAMIDE ADENINE DINUCLEOTIDE PHOSPHATE-SPECIFIC DEHYDROGENASES IN RELATION TO LIPOGENESIS. Biochim Biophys Acta. 1964 Jun 15;84:239–250. doi: 10.1016/0926-6542(64)90053-8. [DOI] [PubMed] [Google Scholar]
- Taylor C. B., Bailey E., Bartley W. Changes in hepatic lipigenesis during development of the rat. Biochem J. 1967 Nov;105(2):717–722. doi: 10.1042/bj1050717. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WISE E. M., Jr, BALL E. G. MALIC ENZYME AND LIPOGENESIS. Proc Natl Acad Sci U S A. 1964 Nov;52:1255–1263. doi: 10.1073/pnas.52.5.1255. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Walter P., Paetkau V., Lardy H. A. Paths of carbon in gluconeogenesis and lipogenesis. 3. The role and regulation of mitochondrial processes involved in supplying precursors of phosphoenolpyruvate. J Biol Chem. 1966 Jun 10;241(11):2523–2532. [PubMed] [Google Scholar]
- Weber G., Convery H. J., Lea M. A., Stamm N. B. Feedback inhibition of key glycolytic enzymes in liver: action of free fatty acids. Science. 1966 Dec 9;154(3754):1357–1360. doi: 10.1126/science.154.3754.1357. [DOI] [PubMed] [Google Scholar]
- Weber G., Lea M. A., Convery H. J., Stamm N. B. Regulation of gluconeogenesis and glycolysis: studies of mechanisms controlling enzyme activity. Adv Enzyme Regul. 1967;5:257–300. doi: 10.1016/0065-2571(67)90020-9. [DOI] [PubMed] [Google Scholar]
- YOUNG J. W., SHRAGO E., LARDY H. A. METABOLIC CONTROL OF ENZYMES INVOLVED IN LIPOGENESIS AND GLUCONEOGENESIS. Biochemistry. 1964 Nov;3:1687–1692. doi: 10.1021/bi00899a015. [DOI] [PubMed] [Google Scholar]