Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1969 Jun;98(3):1114–1119. doi: 10.1128/jb.98.3.1114-1119.1969

Biosynthesis of Riboflavine in Corynebacterium Species: the Purine Precursor

Charles M Baugh 1, Carlos L Krumdieck 1
PMCID: PMC315303  PMID: 5788699

Abstract

Corynebacterium species lacks the ability to convert either xanthine or guanine to adenine. This defect and the use of the purine nucleoside antibiotic decoyinine, which blocks the conversion of xanthosine monophosphate → guanosine monophosphate, permit an experimental design in which the interconversion of purines is largely prevented. Cultures of this organism were grown in the presence of decoyinine and various purine supplements. Data obtained by comparing the radioactivity incorporated from guanine-2-14C or xanthine-2-14C into bacterial guanine, xanthine, and riboflavine indicate that guanine or a close derivative of guanine is the purine precursor of riboflavine.

Full text

PDF
1114

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bloch A., Nichol C. A. Inhibition of ribosephosphate pyrophosphokinase activity by decoinine, an adenine nucleoside. Biochem Biophys Res Commun. 1964 Jul 27;16(5):400–403. doi: 10.1016/0006-291x(64)90365-1. [DOI] [PubMed] [Google Scholar]
  2. GIRI K. V., KRISHNASWAMY P. R. Studies on the synthesis of riboflavin by a mutant yeast, Saccharomyces cerevisiae. J Bacteriol. 1954 Mar;67(3):309–313. doi: 10.1128/jb.67.3.309-313.1954. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Goldstein G. Ligand-exchange chromatography of nucleotides, nucleosides, and nucleic acid bases. Anal Biochem. 1967 Sep;20(3):477–483. doi: 10.1016/0003-2697(67)90292-8. [DOI] [PubMed] [Google Scholar]
  4. Guroff G., Strenkoski C. A. Biosynthesis of pteridines and of phenylalanine hydroxylase cofactor in cell-free extracts of Pseudomonas species (ATCC 11299a). J Biol Chem. 1966 May 25;241(10):2220–2227. [PubMed] [Google Scholar]
  5. HOWELLS D. J., PLAUT G. W. BIOSYNTHESIS OF RIBOFLAVINE BY A PURINE-REQUIRING MUTANT STRAIN OF ESCHERICHIA COLI. Biochem J. 1965 Mar;94:755–759. doi: 10.1042/bj0940755. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Jones T. H., Brown G. M. The biosynthesis of folic acid. VII. Enzymatic synthesis of pteridines from guanosine triphosphate. J Biol Chem. 1967 Sep 25;242(18):3989–3997. [PubMed] [Google Scholar]
  7. KATZ S., COMB D. G. A NEW METHOD FOR THE DETERMINATION OF THE BASE COMPOSITION OF RIBONUCLEIC ACID. J Biol Chem. 1963 Sep;238:3065–3067. [PubMed] [Google Scholar]
  8. Krumdieck C. L., Shaw E., Baugh C. M. The biosynthesis of 2-amino-4-hydroxy-6-substituted pteridines. The origin of carbon atoms 6, 7, and 9 of folic acid. J Biol Chem. 1966 Jan 25;241(2):383–387. [PubMed] [Google Scholar]
  9. Levenberg B., Kaczmarek D. K. Enzymic release of carbon atom 8 from guanosine triphosphate, an early reaction in the conversion of purines to pteridines. Biochim Biophys Acta. 1966 Mar 28;117(1):272–275. doi: 10.1016/0304-4165(66)90179-6. [DOI] [PubMed] [Google Scholar]
  10. Levenberg B., Linton S. N. On the biosynthesis of toxoflavin, an azapteridine antibiotic produced by Pseudomonas cocovenenans. J Biol Chem. 1966 Feb 25;241(4):846–852. [PubMed] [Google Scholar]
  11. MCNUTT W. S., Jr The incorporation of the pyrimidine ring of adenine into the isoalloxazine ring of riboflavin. J Biol Chem. 1956 Mar;219(1):365–373. [PubMed] [Google Scholar]
  12. MacLAREN J. A. The effects of certain purines and pyrimidines upon the production of riboflavin by Eremothecium ashbyii. J Bacteriol. 1952 Feb;63(2):233–241. doi: 10.1128/jb.63.2.233-241.1952. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. McNUTT W. S. The direct contribution of adenine to the biogenesis of riboflavin by Eremothecium ashbyii. J Biol Chem. 1954 Oct;210(2):511–519. [PubMed] [Google Scholar]
  14. PLAUT G. W. Biosynthesis of riboflavin. I. Incorporation of C14-labeled compounds into rings B and C. J Biol Chem. 1954 Jun;208(2):513–520. [PubMed] [Google Scholar]
  15. ROSE I. A., SCHWEIGERT B. S. Incorporation of C14 totally labeled nucleosides into nucleic acids. J Biol Chem. 1953 Jun;202(2):635–645. [PubMed] [Google Scholar]
  16. Shiota T., Palumbo M. P. Enzymatic synthesis of the pteridine moiety of dihydrofolate from guanine nucleotides. J Biol Chem. 1965 Nov;240(11):4449–4453. [PubMed] [Google Scholar]
  17. UDAKA S., MOYED H. S. INHIBITION OF PARENTAL AND MUTANT XANTHOSINE 5'-PHOSPHATE AMINASES BY PSICOFURANINE. J Biol Chem. 1963 Aug;238:2797–2803. [PubMed] [Google Scholar]
  18. WHITBY L. G. A new method for preparing flavin-adenine dinucleotide. Biochem J. 1953 Jun;54(3):437–442. doi: 10.1042/bj0540437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. YUNTSEN H. On the studies of angustmycins. V. The structure of angustose. J Antibiot (Tokyo) 1958 Mar;11(2):77–79. [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES