Abstract
Kinetics of inactivation of transduction by phage P1bt which had been treated with ultraviolet light (UV) or nitrous acid (NA) was examined. With Escherichia coli B/r (radiation-resistant), low doses of UV increased transduction frequency, but the frequency was exponentially inactivated by higher doses. Little initial stimulus was observed in strain Bs−1 (radiation-sensitive). The final rate of decay was the same as in B/r. The initial stimulus of transduction in B/r was probably a consequence of increased recombination resulting from dark repair. It was estimated that another nucleotide within 1000 nucleotide pairs had to be damaged by UV to prevent a given nucleotide from successful transduction. The NA dose response was the same for the two strains. An initial stimulus of transduction was followed by exponential decline. The UV-repair enzymes missing in Bs−1 were not required for repair of NA-induced damage to transducing or lytic phage DNA. Low recovery of new mutations in the transductants showed that mutagen-induced damage to transducing DNA was excluded from recombinant chromosomes. The few recovered mutants may have resulted from “normal” error in recombination.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- ADYE J. Effects of nitrous acid on transduction by Salmonella phage P22. Virology. 1962 Dec;18:627–632. doi: 10.1016/0042-6822(62)90065-x. [DOI] [PubMed] [Google Scholar]
- ANAGNOSTOPOULOS C., CRAWFORD I. P. Transformation studies on the linkage of markers in the tryptophan pathway in Bacillus subtilis. Proc Natl Acad Sci U S A. 1961 Mar 15;47:378–390. doi: 10.1073/pnas.47.3.378. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BENZINGER R., HARTMAN P. E. Effects of ultraviolet light on transducing phage P22. Virology. 1962 Dec;18:614–626. doi: 10.1016/0042-6822(62)90064-8. [DOI] [PubMed] [Google Scholar]
- BERTANI G. Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli. J Bacteriol. 1951 Sep;62(3):293–300. doi: 10.1128/jb.62.3.293-300.1951. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BOYER H., ENGLESBERG E., WEINBERG R. Direct selection of L-arabinose negative mutants of Escherichia coli strain B@rl. Genetics. 1962 Apr;47:417–425. doi: 10.1093/genetics/47.4.417. [DOI] [PMC free article] [PubMed] [Google Scholar]
- CABRERA JUAREZ E., HERRIOTT R. M. ULTRAVIOLET IRRADIATION OF NATIVE AND DENATURED TRANSFORMING DEOXYRIBONUCLEIC ACID FROM HAEMOPHILUS INFLUENZAE. J Bacteriol. 1963 Mar;85:671–675. doi: 10.1128/jb.85.3.671-675.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DAVIS B. D., MINGIOLI E. S. Mutants of Escherichia coli requiring methionine or vitamin B12. J Bacteriol. 1950 Jul;60(1):17–28. doi: 10.1128/jb.60.1.17-28.1950. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DEMEREC M. SELFER MUTANTS OF SALMONELLA TYPHIMURIUM. Genetics. 1963 Nov;48:1519–1531. doi: 10.1093/genetics/48.11.1519. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Donch J., Green M. H., Greenberg J. Interaction of the exr and lon genes in Escherichia coli. J Bacteriol. 1968 Nov;96(5):1704–1710. doi: 10.1128/jb.96.5.1704-1710.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Donch J., Greenberg J. Partial reactivation of irradiated phage P1 by strain Bs2 of Escherichia coli. Biochim Biophys Acta. 1968 Aug 23;166(1):271–273. doi: 10.1016/0005-2787(68)90516-9. [DOI] [PubMed] [Google Scholar]
- Drake J. W. Ultraviolet mutagenesis in bacteriophage T-4. I. Irradiation of extracellular phage particles. J Bacteriol. 1966 May;91(5):1775–1780. doi: 10.1128/jb.91.5.1775-1780.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ENGLESBERG E., ANDERSON R. L., WEINBERG R., LEE N., HOFFEE P., HUTTENHAUER G., BOYER H. L-Arabinose-sensitive, L-ribulose 5-phosphate 4-epimerase-deficient mutants of Escherichia coli. J Bacteriol. 1962 Jul;84:137–146. doi: 10.1128/jb.84.1.137-146.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eisen H., Pereira da Silva L., Jacob F. The regulation and mechanism of DNA synthesis in bacteriophage lambda. Cold Spring Harb Symp Quant Biol. 1968;33:755–764. doi: 10.1101/sqb.1968.033.01.086. [DOI] [PubMed] [Google Scholar]
- GAREN A., ZINDER N. D. Radiological evidence for partial genetic homology between bacteriophage and host bacteria. Virology. 1955 Nov;1(4):347–376. doi: 10.1016/0042-6822(55)90030-1. [DOI] [PubMed] [Google Scholar]
- GREENBERG J. A LOCUS FOR RADIATION RESISTANCE IN ESCHERICHIA COLI. Genetics. 1964 May;49:771–778. doi: 10.1093/genetics/49.5.771. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gilbert W., Dressler D. DNA replication: the rolling circle model. Cold Spring Harb Symp Quant Biol. 1968;33:473–484. doi: 10.1101/sqb.1968.033.01.055. [DOI] [PubMed] [Google Scholar]
- Greenberg J. Loci for radiation sensitivity in Escherichia coli strain Bs-1. Genetics. 1967 Feb;55(2):193–201. doi: 10.1093/genetics/55.2.193. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HARTMAN P. E., KOZINSKI A. W. Effects of P32 decay on transduction by Salmonella phage P22. Virology. 1962 Jun;17:233–244. doi: 10.1016/0042-6822(62)90113-7. [DOI] [PubMed] [Google Scholar]
- Helling R. B. Selection of a mutant of Escherichia coli which has high mutation rates. J Bacteriol. 1968 Oct;96(4):975–980. doi: 10.1128/jb.96.4.975-980.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Helling R. B. The effect of arabinose-specific enzyme synthesis on recombination in the arabinose genes of Escherichia coli. Genetics. 1967 Nov;57(3):665–675. doi: 10.1093/genetics/57.3.665. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Howard-Flanders P., Boyce R. P. DNA repair and genetic recombination: studies on mutants of Escherichia coli defective in these processes. Radiat Res. 1966;(Suppl):156+–156+. [PubMed] [Google Scholar]
- Howard-Flanders P., Boyce R. P., Theriot L. Three loci in Escherichia coli K-12 that control the excision of pyrimidine dimers and certain other mutagen products from DNA. Genetics. 1966 Jun;53(6):1119–1136. doi: 10.1093/genetics/53.6.1119. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Howard-Flanders P. DNA repair. Annu Rev Biochem. 1968;37:175–200. doi: 10.1146/annurev.bi.37.070168.001135. [DOI] [PubMed] [Google Scholar]
- Ikeda H., Tomizawa J. Prophage P1, and extrachromosomal replication unit. Cold Spring Harb Symp Quant Biol. 1968;33:791–798. doi: 10.1101/sqb.1968.033.01.091. [DOI] [PubMed] [Google Scholar]
- JACOB F., WOLLMAN E. L. Etude génétique d'un bactériophage tempéré d'Escherichia coli. III. Effet du rayonnement ultraviolet sur la recombinaison génétique. Ann Inst Pasteur (Paris) 1955 Jun;88(6):724–749. [PubMed] [Google Scholar]
- KELLY M. S., PRITCHARD R. H. UNSTABLE LINKAGE BETWEEN GENETIC MARKERS IN TRANSFORMATION. J Bacteriol. 1965 May;89:1314–1321. doi: 10.1128/jb.89.5.1314-1321.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LITMAN R. M., EPHRUSSI-TAYLOR H. [Inactivation and mutation of the genetic factors of the desoxyribonucleic acid of pneumococcus by ultraviolet light and by nitrous acid]. C R Hebd Seances Acad Sci. 1959 Aug 10;249:838–840. [PubMed] [Google Scholar]
- Mattern I. E., Zwenk H., Rörsch A. The genetic constitution of the radiation-sensitive mutant Escherichia coli Bs-1. Mutat Res. 1966 Oct;3(5):374–380. doi: 10.1016/0027-5107(66)90047-9. [DOI] [PubMed] [Google Scholar]
- SAUERBIER W. Evidence for a nonrecombinational mechanism of host cell reactivation of phage. Virology. 1962 Apr;16:398–404. doi: 10.1016/0042-6822(62)90219-2. [DOI] [PubMed] [Google Scholar]
- STRACK H. B., FREESE E. B., FREESE E. COMPARISON OF MUTATION AND INACTIVATION RATES INDUCED IN BACTERIOPHAGE AND TRANSFORMING DNA BY VARIOUS MUTAGENS. Mutat Res. 1964 May;106:10–21. doi: 10.1016/0027-5107(64)90048-x. [DOI] [PubMed] [Google Scholar]
- Shapiro R., Pohl S. H. The reaction of ribonucleosides with nitrous acid. Side products and kinetics. Biochemistry. 1968 Jan;7(1):448–455. doi: 10.1021/bi00841a057. [DOI] [PubMed] [Google Scholar]
- TAKEBE H., HARTMAN P. E. Effects of x-rays on transduction by Salmonella phage P22. Virology. 1962 Jun;17:295–300. doi: 10.1016/0042-6822(62)90120-4. [DOI] [PubMed] [Google Scholar]
- Takebe H. Role of host-cell reactivation in the enhancement of complete transduction after UV irradiation of P22 phage. Biochem Biophys Res Commun. 1968 Jun 28;31(6):938–944. doi: 10.1016/0006-291x(68)90543-3. [DOI] [PubMed] [Google Scholar]
- Tomizawa J., Ogawa H. Breakage of DNA in rec+ and Rec- bacteria by disintegration of radiophosphorus atoms in DNA and possible cause of pleiotropic effects of RecA mutation. Cold Spring Harb Symp Quant Biol. 1968;33:243–251. doi: 10.1101/sqb.1968.033.01.028. [DOI] [PubMed] [Google Scholar]
- Wilkins B. M., Howard-Flanders P. The genetic properties of DNA transferred from ultraviolet-irradiated Hfr cells of Escherichia coli K-12 during mating. Genetics. 1968 Oct;60(2):243–255. doi: 10.1093/genetics/60.2.243. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yoshikawa H. Mutations Resulting from the Transformation of BACILLUS SUBTILIS. Genetics. 1966 Nov;54(5):1201–1214. doi: 10.1093/genetics/54.5.1201. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yura T., Wada C. Phenethyl alcohol resistance in Escherichia coli. I. Resistance of strain C600 and its relation to azide resistance. Genetics. 1968 Jun;59(2):177–190. doi: 10.1093/genetics/59.2.177. [DOI] [PMC free article] [PubMed] [Google Scholar]