Skip to main content
Cellular & Molecular Biology Letters logoLink to Cellular & Molecular Biology Letters
. 2011 Apr 3;16(3):359–372. doi: 10.2478/s11658-011-0011-2

Mislocalization of CDK11/PITSLRE, a regulator of the G2/M phase of the cell cycle, in Alzheimer disease

Vladan P Bajić 1,, Bo Su 2, Hyoung-Gon Lee 2, Wataru Kudo 2, Sandra L Siedlak 2, Lada Živković 3, Biljana Spremo-Potparević 3, Ninoslav Djelic 4, Zorana Milicevic 5, Avneet K Singh 2, Lara M Fahmy 2, Xinglong Wang 2, Mark A Smith 2, Xiongwei Zhu 2,
PMCID: PMC3153952  NIHMSID: NIHMS315936  PMID: 21461981

Abstract

Post-mitotic neurons are typically terminally differentiated and in a quiescent status. However, in Alzheimer disease (AD), many neurons display ectopic re-expression of cell cycle-related proteins. Cyclin-dependent kinase 11 (CDK11) mRNA produces a 110-kDa protein (CDK11p110) throughout the cell cycle, a 58-kDa protein (CDK11p58) that is specifically translated from an internal ribosome entry site and expressed only in the G2/M phase of the cell cycle, and a 46-kDa protein (CDK11p46) that is considered to be apoptosis specific. CDK11 is required for sister chromatid cohesion and the completion of mitosis. In this study, we found that the expression patterns of CDK11 vary such that cytoplasmic CDK11 is increased in AD cellular processes, compared to a pronounced nuclear expression pattern in most controls. We also investigated the effect of amyloid precursor protein (APP) on CDK11 expression in vitro by using M17 cells overexpressing wild-type APP and APP Swedish mutant phenotype and found increased CDK11 expression compared to empty vector. In addition, amyloid-β25–35 resulted in increased CDK11 in M17 cells. These data suggest that CDK11 may play a vital role in cell cycle re-entry in AD neurons in an APP-dependent manner, thus presenting an intriguing novel function of the APP signaling pathway in AD.

Key words: Alzheimer disease, APP, CDK11, M17 cells

Full Text

The Full Text of this article is available as a PDF (3.1 MB).

Abbreviations used

amyloid-β

AD

Alzheimer disease

APP

amyloid precursor protein

CDK11

cyclin-dependent kinase 11

CDKIs

cyclin-dependent kinase inhibitors

IRES

internal ribosome entry site

MT

microtubule

Contributor Information

Vladan P. Bajić, Email: vladanbajic@yahoo.com

Xiongwei Zhu, Email: xiongwei.zhu@case.edu.

References

  • 1.Rosenberg R.N. The molecular and genetic basis of AD: the end of the beginning: the 2000 Wartenberg lecture. Neurology. 2000;54:2045–2054. doi: 10.1212/wnl.54.11.2045. [DOI] [PubMed] [Google Scholar]
  • 2.Steele C.D. The genetics of Alzheimer disease. Nurs. Clin. North Am. 2000;35:687–694. [PubMed] [Google Scholar]
  • 3.Smith M.A. Alzheimer disease. Int. Rev. Neurobiol. 1998;42:1–54. doi: 10.1016/S0074-7742(08)60607-8. [DOI] [PubMed] [Google Scholar]
  • 4.Vincent I., Rosado M., Davies P. Mitotic mechanisms in Alzheimer’s disease? J. Cell Biol. 1996;132:413–425. doi: 10.1083/jcb.132.3.413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Vincent I., Jicha G., Rosado M., Dickson D.W. Aberrant expression of mitotic cdc2/cyclin B1 kinase in degenerating neurons of Alzheimer’s disease brain. J. Neurosci. 1997;17:3588–3598. doi: 10.1523/JNEUROSCI.17-10-03588.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.McShea A., Wahl A.F., Smith M.A. Re-entry into the cell cycle: a mechanism for neurodegeneration in Alzheimer disease. Med. Hypotheses. 1999;52:525–527. doi: 10.1054/mehy.1997.0680. [DOI] [PubMed] [Google Scholar]
  • 7.Arendt T., Rodel L., Gartner U., Holzer M. Expression of the cyclin-dependent kinase inhibitor p16 in Alzheimer’s disease. Neuroreport. 1996;7:3047–3049. doi: 10.1097/00001756-199611250-00050. [DOI] [PubMed] [Google Scholar]
  • 8.McShea A., Harris P.L., Webster K.R., Wahl A.F., Smith M.A. Abnormal expression of the cell cycle regulators P16 and CDK4 in Alzheimer’s disease. Am. J. Pathol. 1997;150:1933–1939. [PMC free article] [PubMed] [Google Scholar]
  • 9.Raina A.K., Zhu X., Smith M.A. Alzheimer’s disease and the cell cycle. Acta Neurobiol. Exp. (Wars) 2004;64:107–112. doi: 10.55782/ane-2004-1496. [DOI] [PubMed] [Google Scholar]
  • 10.Zhu X., Raina A.K., Boux H., Simmons Z.L., Takeda A., Smith M.A. Activation of oncogenic pathways in degenerating neurons in Alzheimer disease. Int. J. Dev. Neurosci. 2000;18:433–437. doi: 10.1016/S0736-5748(00)00010-1. [DOI] [PubMed] [Google Scholar]
  • 11.Nagy Z., Esiri M.M., Hindley N.J., Joachim C., Morris J.H., King E.M., McDonald B., Litchfield S., Barnetson L., Jobst K.A., Smith A.D. Accuracy of clinical operational diagnostic criteria for Alzheimer’s disease in relation to different pathological diagnostic protocols. Dement. Geriatr. Cogn. Disord. 1998;9:219–226. doi: 10.1159/000017050. [DOI] [PubMed] [Google Scholar]
  • 12.Lee H.G., Casadesus G., Zhu X., Castellani R.J., McShea A., Perry G., Petersen R.B., Bajic V., Smith M.A. Cell cycle re-entry mediated neurodegeneration and its treatment role in the pathogenesis of Alzheimer’s disease. Neurochem. Int. 2009;54:84–88. doi: 10.1016/j.neuint.2008.10.013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Varvel N.H., Bhaskar K., Patil A.R., Pimplikar S.W., Herrup K., Lamb B.T. Abeta oligomers induce neuronal cell cycle events in Alzheimer’s disease. J. Neurosci. 2008;28:10786–10793. doi: 10.1523/JNEUROSCI.2441-08.2008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Tomiyama T., Matsuyama S., Iso H., Umeda T., Takuma H., Ohnishi K., Ishibashi K., Teraoka R., Sakama N., Yamashita T., Nishitsuji K., Ito K., Shimada H., Lambert M.P., Klein W.L., Mori H. A mouse model of amyloid beta oligomers: their contribution to synaptic alteration, abnormal tau phosphorylation, glial activation, and neuronal loss in vivo. J. Neurosci. 2010;30:4845–4856. doi: 10.1523/JNEUROSCI.5825-09.2010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Tomiyama T., Nagata T., Shimada H., Teraoka R., Fukushima A., Kanemitsu H., Takuma H., Kuwano R., Imagawa M., Ataka S., Wada Y., Yoshioka E., Nishizaki T., Watanabe Y., Mori H. A new amyloid beta variant favoring oligomerization in Alzheimer’s-type dementia. Ann. Neurol. 2008;63:377–387. doi: 10.1002/ana.21321. [DOI] [PubMed] [Google Scholar]
  • 16.Lavoie J.N., Rivard N., L’Allemain G., Pouyssegur J. A temporal and biochemical link between growth factor-activated MAP kinases, cyclin D1 induction and cell cycle entry. Prog. Cell Cycle Res. 1996;2:49–58. doi: 10.1007/978-1-4615-5873-6_5. [DOI] [PubMed] [Google Scholar]
  • 17.Reed S.I. G1/S regulatory mechanisms from yeast to man. Prog. Cell Cycle Res. 1996;2:15–27. doi: 10.1007/978-1-4615-5873-6_2. [DOI] [PubMed] [Google Scholar]
  • 18.Grana X., Reddy E.P. Cell cycle control in mammalian cells: role of cyclins, cyclin dependent kinases (CDKs), growth suppressor genes and cyclin-dependent kinase inhibitors (CKIs) Oncogene. 1995;11:211–219. [PubMed] [Google Scholar]
  • 19.McDonald D.R., Bamberger M.E., Combs C.K., Landreth G.E. beta-Amyloid fibrils activate parallel mitogen-activated protein kinase pathways in microglia and THP1 monocytes. J. Neurosci. 1998;18:4451–4460. doi: 10.1523/JNEUROSCI.18-12-04451.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Zhang S., Cai M., Zhang S., Xu S., Chen S., Chen X., Chen C., Gu J. Interaction of p58(PITSLRE), a G2/M-specific protein kinase, with cyclin D3. J. Biol. Chem. 2002;277:35314–35322. doi: 10.1074/jbc.M202179200. [DOI] [PubMed] [Google Scholar]
  • 21.Li Z., Wang H., Zong H., Sun Q., Kong X., Jiang J., Gu J. Downregulation of beta1,4-galactosyltransferase 1 inhibits CDK11(p58)-mediated apoptosis induced by cycloheximide. Biochem. Biophys. Res. Commun. 2005;327:628–636. doi: 10.1016/j.bbrc.2004.12.047. [DOI] [PubMed] [Google Scholar]
  • 22.Xiang J., Lahti J.M., Grenet J., Easton J., Kidd V.J. Molecular cloning and expression of alternatively spliced PITSLRE protein kinase isoforms. J. Biol. Chem. 1994;269:15786–15794. [PubMed] [Google Scholar]
  • 23.Gururajan R., Lahti J.M., Grenet J., Easton J., Gruber I., Ambros P.F., Kidd V.J. Duplication of a genomic region containing the Cdc2L1–2 and MMP21–22 genes on human chromosome 1p36.3 and their linkage to D1Z2. Genome Res. 1998;8:929–939. doi: 10.1101/gr.8.9.929. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Shi J., Nelson M.A. The cyclin-dependent kinase 11 interacts with NOT2. Biochem. Biophys. Res. Commun. 2005;334:1310–1316. doi: 10.1016/j.bbrc.2005.07.026. [DOI] [PubMed] [Google Scholar]
  • 25.Loyer P., Trembley J.H., Katona R., Kidd V.J., Lahti J.M. Role of CDK/cyclin complexes in transcription and RNA splicing. Cell. Signal. 2005;17:1033–1051. doi: 10.1016/j.cellsig.2005.02.005. [DOI] [PubMed] [Google Scholar]
  • 26.Yokoyama H., Gruss O.J., Rybina S., Caudron M., Schelder M., Wilm M., Mattaj I.W., Karsenti E. Cdk11 is a RanGTP-dependent microtubule stabilization factor that regulates spindle assembly rate. J. Cell Biol. 2008;180:867–875. doi: 10.1083/jcb.200706189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Petretti C., Savoian M., Montembault E., Glover D.M., Prigent C., Giet R. The PITSLRE/CDK11p58 protein kinase promotes centrosome maturation and bipolar spindle formation. EMBO Rep. 2006;7:418–424. doi: 10.1038/sj.embor.7400639. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Lahti J.M., Xiang J., Heath L.S., Campana D., Kidd V.J. PITSLRE protein kinase activity is associated with apoptosis. Mol. Cell. Biol. 1995;15:1–11. doi: 10.1128/mcb.15.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Hu D., Valentine M., Kidd V.J., Lahti J.M. CDK11(p58) is required for the maintenance of sister chromatid cohesion. J. Cell Sci. 2007;120:2424–2434. doi: 10.1242/jcs.007963. [DOI] [PubMed] [Google Scholar]
  • 30.Bunnell B.A., Heath L.S., Adams D.E., Lahti J.M., Kidd V.J. Increased expression of a 58-kDa protein kinase leads to changes in the CHO cell cycle. Proc. Natl. Acad. Sci. U. S. A. 1990;87:7467–7471. doi: 10.1073/pnas.87.19.7467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Zong H., Chi Y., Wang Y., Yang Y., Zhang L., Chen H., Jiang J., Li Z., Hong Y., Wang H., Yun X., Gu J. Cyclin D3/CDK11p58 complex is involved in the repression of androgen receptor. Mol. Cell. Biol. 2007;27:7125–7142. doi: 10.1128/MCB.01753-06. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Hu D., Mayeda A., Trembley J.H., Lahti J.M., Kidd V.J. CDK11 complexes promote pre-mRNA splicing. J. Biol. Chem. 2003;278:8623–8629. doi: 10.1074/jbc.M210057200. [DOI] [PubMed] [Google Scholar]
  • 33.Chen H.H., Wang Y.C., Fann M.J. Identification and characterization of the CDK12/cyclin L1 complex involved in alternative splicing regulation. Mol. Cell. Biol. 2006;26:2736–2745. doi: 10.1128/MCB.26.7.2736-2745.2006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Trembley J.H., Hu D., Hsu L.C., Yeung C.Y., Slaughter C., Lahti J.M., Kidd V.J. PITSLRE p110 protein kinases associate with transcription complexes and affect their activity. J. Biol. Chem. 2002;277:2589–2596. doi: 10.1074/jbc.M109755200. [DOI] [PubMed] [Google Scholar]
  • 35.Wendt K.S., Yoshida K., Itoh T., Bando M., Koch B., Schirghuber E., Tsutsumi S., Nagae G., Ishihara K., Mishiro T., Yahata K., Imamoto F., Aburatani H., Nakao M., Imamoto N., Maeshima K., Shirahige K., Peters J.M. Cohesin mediates transcriptional insulation by CCCTC-binding factor. Nature. 2008;451:796–801. doi: 10.1038/nature06634. [DOI] [PubMed] [Google Scholar]
  • 36.Spremo-Potparevic B., Zivkovic L., Djelic N., Bajic V. Analysis of premature centromere division (PCD) of the X chromosome in Alzheimer patients through the cell cycle. Exp. Gerontol. 2004;39:849–854. doi: 10.1016/j.exger.2004.01.012. [DOI] [PubMed] [Google Scholar]
  • 37.Zivkovic L., Spremo-Potparevic B., Djelic N., Bajic V. Analysis of premature centromere division (PCD) of the chromosome 18 in peripheral blood lymphocytes in Alzheimer disease patients. Mech. Ageing Dev. 2006;127:892–896. doi: 10.1016/j.mad.2006.09.004. [DOI] [PubMed] [Google Scholar]
  • 38.Bajic V.P., Spremo-Potparevic B., Zivkovic L., Djelic N., Smith M.A. Is the time dimension of the cell cycle re-entry in AD regulated by centromere cohesion dynamics? Biosci. Hypotheses. 2008;1:156–161. doi: 10.1016/j.bihy.2008.03.006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.Migliore L., Testa A., Scarpato R., Pavese N., Petrozzi L., Bonuccelli U. Spontaneous and induced aneuploidy in peripheral blood lymphocytes of patients with Alzheimer’s disease. Hum. Genet. 1997;101:299–305. doi: 10.1007/s004390050632. [DOI] [PubMed] [Google Scholar]
  • 40.Sternberger L.A. Immunocytochemistry. New York: Wiley; 1986. [Google Scholar]
  • 41.Wang X., Su B., Siedlak S.L., Moreira P.I., Fujioka H., Wang Y., Casadesus G., Zhu X. Amyloid-beta overproduction causes abnormal mitochondrial dynamics via differential modulation of mitochondrial fission/fusion proteins. Proc. Natl. Acad. Sci. U. S. A. 2008;105:19318–19323. doi: 10.1073/pnas.0804871105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Su B., Wang X., Drew K.L., Perry G., Smith M.A., Zhu X. Physiological regulation of tau phosphorylation during hibernation. J. Neurochem. 2008;105:2098–2108. doi: 10.1111/j.1471-4159.2008.05294.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.Wang X., Su B., Fujioka H., Zhu X. Dynamin-like protein 1 reduction underlies mitochondrial morphology and distribution abnormalities in fibroblasts from sporadic Alzheimer’s disease patients. Am. J. Pathol. 2008;173:470–482. doi: 10.2353/ajpath.2008.071208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.Zhu X., McShea A., Harris P.L., Raina A.K., Castellani R.J., Funk J.O., Shah S., Atwood C., Bowen R., Bowser R., Morelli L., Perry G., Smith M.A. Elevated expression of a regulator of the G2/M phase of the cell cycle, neuronal CIP-1-associated regulator of cyclin B, in Alzheimer’s disease. J. Neurosci. Res. 2004;75:698–703. doi: 10.1002/jnr.20028. [DOI] [PubMed] [Google Scholar]
  • 45.Harris P.L., Zhu X., Pamies C., Rottkamp C.A., Ghanbari H.A., McShea A., Feng Y., Ferris D.K., Smith M.A. Neuronal polo-like kinase in Alzheimer disease indicates cell cycle changes. Neurobiol. Aging. 2000;21:837–841. doi: 10.1016/S0197-4580(00)00218-9. [DOI] [PubMed] [Google Scholar]
  • 46.Previll L.A., Crosby M.E., Castellani R.J., Bowser R., Perry G., Smith M.A., Zhu X. Increased expression of p130 in Alzheimer disease. Neurochem. Res. 2007;32:639–644. doi: 10.1007/s11064-006-9146-3. [DOI] [PubMed] [Google Scholar]
  • 47.Ogawa O., Zhu X., Lee H.G., Raina A., Obrenovich M.E., Bowser R., Ghanbari H.A., Castellani R.J., Perry G., Smith M.A. Ectopic localization of phosphorylated histone H3 in Alzheimer’s disease: a mitotic catastrophe? Acta Neuropathol. (Berl) 2003;105:524–528. doi: 10.1007/s00401-003-0684-3. [DOI] [PubMed] [Google Scholar]
  • 48.Bonda D.J., Bajic V.P., Spremo-Potparevic B., Casadesus G., Zhu X., Smith M.A., Lee H.G. Cell Cycle Aberrations and Neurodegeneration: A Review. Neuropathol. Appl. Neurobiol. 2010;36:157–163. doi: 10.1111/j.1365-2990.2010.01064.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49.Zhu X., Raina A.K., Lee H.G., Chao M., Nunomura A., Tabaton M., Petersen R.B., Perry G., Smith M.A. Oxidative stress and neuronal adaptation in Alzheimer disease: the role of SAPK pathways. Antioxid. Redox Signal. 2003;5:571–576. doi: 10.1089/152308603770310220. [DOI] [PubMed] [Google Scholar]
  • 50.Mosch B., Morawski M., Mittag A., Lenz D., Tarnok A., Arendt T. Aneuploidy and DNA replication in the normal human brain and Alzheimer’s disease. J. Neurosci. 2007;27:6859–6867. doi: 10.1523/JNEUROSCI.0379-07.2007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51.Yang Y., Geldmacher D.S., Herrup K. DNA replication precedes neuronal cell death in Alzheimer’s disease. J. Neurosci. 2001;21:2661–2668. doi: 10.1523/JNEUROSCI.21-08-02661.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52.Zhu X., Siedlak S.L., Wang Y., Perry G., Castellani R.J., Cohen M.L., Smith M.A. Neuronal binucleation in Alzheimer disease hippocampus. Neuropathol. Appl. Neurobiol. 2008;34:457–465. doi: 10.1111/j.1365-2990.2007.00908.x. [DOI] [PubMed] [Google Scholar]
  • 53.Spremo-Potparevic B., Zivkovic L., Djelic N., Plecas-Solarovic B., Smith M.A., Bajic V. Premature centromere division of the X chromosome in neurons in Alzheimer’s disease. J. Neurochem. 2008;106:2218–2223. doi: 10.1111/j.1471-4159.2008.05555.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54.Cash A.D., Aliev G., Siedlak S.L., Nunomura A., Fujioka H., Zhu X., Raina A.K., Vinters H.V., Tabaton M., Johnson A.B., Paula-Barbosa M., Avila J., Jones P.K., Castellani R.J., Smith M.A., Perry G. Microtubule reduction in Alzheimer’s disease and aging is independent of tau filament formation. Am. J. Pathol. 2003;162:1623–1627. doi: 10.1016/S0002-9440(10)64296-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 55.Lee H.G., Ueda M., Miyamoto Y., Yoneda Y., Perry G., Smith M.A., Zhu X. Aberrant localization of importin alpha1 in hippocampal neurons in Alzheimer disease. Brain Res. 2006;1124:1–4. doi: 10.1016/j.brainres.2006.09.084. [DOI] [PubMed] [Google Scholar]

Articles from Cellular & Molecular Biology Letters are provided here courtesy of BMC

RESOURCES