Abstract
The effect of different respiratory inhibitors on the ergosterol content of microaerobically grown non-proliferating yeast cultures was monitored during adaptation to oxygen. It was found that dinitrophenol, azide, and cyanide, which act on the mechanism of the respiratory chain, cause a marked stimulation of sterol production. Acriflavine and chloramphenicol, which affect the synthesis of the respiratory apparatus, caused a delay in the onset of ergosterol synthesis or a marked decrease in sterol content. The data obtained provide presumptive evidence that a component of sterol formation is synthesized on the 70S ribosomal system of the mitochondrion and induced in the presence of oxygen.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adams B. G., Parks L. W. Evidence for dual physiological formsof ergosterol in Saccharomyces cerevisiae. J Cell Physiol. 1967 Oct;70(2):161–168. doi: 10.1002/jcp.1040700205. [DOI] [PubMed] [Google Scholar]
- Adams B. G., Parks L. W. Isolation from yeast of a metabolically active water-soluble form of ergosterol. J Lipid Res. 1968 Jan;9(1):8–11. [PubMed] [Google Scholar]
- Alexander R. B., Brand F. C., Alexander G. J. Effect of pentamethylenetetrazol on structure and enzyme activity of yeast. I. Changes in mitochondria and in sterol levels. Biochim Biophys Acta. 1965 Nov 15;111(1):318–325. doi: 10.1016/0304-4165(65)90499-x. [DOI] [PubMed] [Google Scholar]
- Chen W. L., Charalampous F. C. Mechanism of induction of cytochrome oxidase in yeast. I. Kinetics of induction and evidence for accumulation of cytoplasmic and mitochondrial precursors. J Biol Chem. 1969 May 25;244(10):2767–2776. [PubMed] [Google Scholar]
- Clark-Walker G. D., Linnane A. W. The biogenesis of mitochondria in Saccharomyces cerevisiae. A comparison between cytoplasmic respiratory-deficient mutant yeast and chlormaphenicol-inhibited wild type cells. J Cell Biol. 1967 Jul;34(1):1–14. doi: 10.1083/jcb.34.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KLEIN H. P. Synthesis of lipids in resting cells of Saccharomyces cerevisiae. J Bacteriol. 1955 Jun;69(6):620–627. doi: 10.1128/jb.69.6.620-627.1955. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kovác L., Subík J., Russ G., Kollár K. On the relationship between respiratory activity and lipid composition of the yeast cell. Biochim Biophys Acta. 1967 Aug 8;144(1):94–101. doi: 10.1016/0005-2760(67)90080-x. [DOI] [PubMed] [Google Scholar]
- LERMAN L. S. Structural considerations in the interaction of DNA and acridines. J Mol Biol. 1961 Feb;3:18–30. doi: 10.1016/s0022-2836(61)80004-1. [DOI] [PubMed] [Google Scholar]
- Lukins H. B., Tham S. H., Wallace P. G., Linnane A. W. Correlation of membrane bound succinate dehydrogenase with the occurrence of mitochondrial profiles in Saccharomyces cerevisiae. Biochem Biophys Res Commun. 1966 May 25;23(4):363–367. doi: 10.1016/0006-291x(66)90734-0. [DOI] [PubMed] [Google Scholar]
- MORPURGO G., SERLUPI-CRESCENZI G., TECCE G., VALENTE F., VENETTACCI D. INFLUENCE OF ERGOSTEROL ON THE PHYSIOLOGY AND THE ULTRA-STRUCTURE OF SACCHAROMYCES CEREVISIAE. Nature. 1964 Feb 29;201:897–899. doi: 10.1038/201897a0. [DOI] [PubMed] [Google Scholar]
- Maguigan W. H., Walker E. Sterol metabolism of micro-organisms: Yeast. Biochem J. 1940 Jun;34(6):804–813. doi: 10.1042/bj0340804. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Monner D. A., Parks L. W. A method for extraction of sterols from enzymically active cell-free preparations. Anal Biochem. 1968 Oct 24;25(1):61–69. doi: 10.1016/0003-2697(68)90081-x. [DOI] [PubMed] [Google Scholar]
- Moustacchi E., Williamson D. H. Physiological variations in satellite components of yeast DNA detected by density gradient centrifugation. Biochem Biophys Res Commun. 1966 Apr 6;23(1):56–61. doi: 10.1016/0006-291x(66)90268-3. [DOI] [PubMed] [Google Scholar]
- NAGAI S., YANAGISHIMA N., NAGAI H. Advances in the study of respiration-deficient (RD) mutation in yeast and other microorganisms. Bacteriol Rev. 1961 Dec;25:404–426. doi: 10.1128/br.25.4.404-426.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PARKS L. W., STARR P. R. A relationship between ergosterol and respiratory competency in yeast. J Cell Comp Physiol. 1963 Feb;61:61–65. doi: 10.1002/jcp.1030610107. [DOI] [PubMed] [Google Scholar]
- Rabinowitz M., Getz G. S., Casey J., Swift H. Synthesis of mitochondrial and nuclear DNA in anerobically grown yeast during the development of mitochondrial function in response to oxygen. J Mol Biol. 1969 May 14;41(3):381–400. doi: 10.1016/0022-2836(69)90283-6. [DOI] [PubMed] [Google Scholar]
- SHERMAN F. The effects of elevated temperatures on yeast. I. Nutrient requirements for growth at elevated temperatures. J Cell Comp Physiol. 1959 Aug;54:29–35. doi: 10.1002/jcp.1030540105. [DOI] [PubMed] [Google Scholar]
- SHERMAN F. The effects of elevated temperatures on yeast. II. Induction of respiratory-deficient mutants. J Cell Comp Physiol. 1959 Aug;54:37–52. doi: 10.1002/jcp.1030540106. [DOI] [PubMed] [Google Scholar]
- STARR P. R., PARKS L. W. Effect of temperature on sterol metabolism in yeast. J Cell Comp Physiol. 1962 Apr;59:107–110. doi: 10.1002/jcp.1030590203. [DOI] [PubMed] [Google Scholar]
- STARR P. R., PARKS L. W. Some factors affecting sterol formation in Saccharomyces cerevisiae. J Bacteriol. 1962 May;83:1042–1046. doi: 10.1128/jb.83.5.1042-1046.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
- TURNER J. R., PARKS L. W. TRANSMETHYLATION PRODUCTS AS INTERMEDIATES IN ERGOSTEROL BIOSYNTHESIS IN YEAST. Biochim Biophys Acta. 1965 Apr 5;98:394–401. doi: 10.1016/0005-2760(65)90132-3. [DOI] [PubMed] [Google Scholar]
- UTTER M. F., KEECH D. B., NOSSAL P. M. Oxidative phosphorylation by subcellular particles from yeast. Biochem J. 1958 Mar;68(3):431–440. doi: 10.1042/bj0680431. [DOI] [PMC free article] [PubMed] [Google Scholar]
