Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1965 Jan;89(1):28–40. doi: 10.1128/jb.89.1.28-40.1965

Chromosomal Aberrations Associated with Mutations to Bacteriophage Resistance in Escherichia coli

Roy Curtiss III a,1
PMCID: PMC315544  PMID: 14255678

Abstract

Curtiss, Roy, III (University of Chicago, Chicago, Ill., and Oak Ridge National Laboratory, Oak Ridge, Tenn.). Chromosomal aberrations associated with mutations to bacteriophage resistance in Escherichia coli. J. Bacteriol. 89:28–40. 1965.—Ten types of mutants of Escherichia coli K-12 resistant to bacteriophage T3 have been isolated, and several of these types have been studied genetically. Many of the /3,4,7, /3,4,7,λ, and /3,4,7,λ,pro1,2 mutants were unstable, changing to complete sensitivity to T4. The results with strains having /3,4,7,λ,pro1,2 mutations were compatible with the hypothesis that this mutation caused a single break in the circular chromosome which prevented the normal association in the inheritance of the outside markers leu+ and lac+. When sensitivity to T4 was regained, association in the inheritance of outside markers was restored, and the resulting /3,7,λ,pro1,2 mutation behaved genetically as a deletion. The /3,7,λ,pro1,2 and /3,4,7,λ,pro1,2 mutations caused positive interference, inhibition of genetic recombination in regions adjacent to them, and the formation of unstable partial diploid recombinants. One group of /3,4,7,λ mutations did not occur in the leu to try region of the bacterial genome. Other /3,4,7,λ mutations in F bacteria prevented the joint inheritance of the outside markers lac+ and gal+, presumably by breakage of the circular chromosome. Hfr and F+ strains with /3,4,7,λ mutations at this locus were unable to conjugate; therefore, a complete genetic analysis of the effects of this /3,4,7,λ mutation could not be done.

Full text

PDF
28

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ANDERSON T. F. Recombination and segregation in Escherichia coli. Cold Spring Harb Symp Quant Biol. 1958;23:47–58. doi: 10.1101/sqb.1958.023.01.007. [DOI] [PubMed] [Google Scholar]
  2. Appleyard R K. Segregation of New Lysogenic Types during Growth of a Doubly Lysogenic Strain Derived from Escherichia Coli K12. Genetics. 1954 Jul;39(4):440–452. doi: 10.1093/genetics/39.4.440. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. CURTIS S. R., 3rd A STABLE PARTIAL DIPLOID STRAIN OF ESCHERICHIA COLI. Genetics. 1964 Oct;50:679–694. doi: 10.1093/genetics/50.4.679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Demerec M, Fano U. Bacteriophage-Resistant Mutants in Escherichia Coli. Genetics. 1945 Mar;30(2):119–136. doi: 10.1093/genetics/30.2.119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. FISHER K. W. The role of the Krebs cycle in conjugation in Escherichia coli K-12. J Gen Microbiol. 1957 Feb;16(1):120–135. doi: 10.1099/00221287-16-1-120. [DOI] [PubMed] [Google Scholar]
  6. HAYES W. The kinetics of the mating process in Escherichia coli. J Gen Microbiol. 1957 Feb;16(1):97–119. doi: 10.1099/00221287-16-1-97. [DOI] [PubMed] [Google Scholar]
  7. KAISER A. D. A genetic study of the temperate coliphage. Virology. 1955 Nov;1(4):424–443. doi: 10.1016/0042-6822(55)90036-2. [DOI] [PubMed] [Google Scholar]
  8. LEDERBERG J. Conjugal pairing in Escherichia coli. J Bacteriol. 1956 Apr;71(4):497–498. doi: 10.1128/jb.71.4.497-498.1956. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. LEDERBERG J., LEDERBERG E. M. Replica plating and indirect selection of bacterial mutants. J Bacteriol. 1952 Mar;63(3):399–406. doi: 10.1128/jb.63.3.399-406.1952. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. LENNOX E. S. Transduction of linked genetic characters of the host by bacteriophage P1. Virology. 1955 Jul;1(2):190–206. doi: 10.1016/0042-6822(55)90016-7. [DOI] [PubMed] [Google Scholar]
  11. Lederberg E M, Lederberg J. Genetic Studies of Lysogenicity in Escherichia Coli. Genetics. 1953 Jan;38(1):51–64. doi: 10.1093/genetics/38.1.51. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lederberg J. Gene Recombination and Linked Segregations in Escherichia Coli. Genetics. 1947 Sep;32(5):505–525. doi: 10.1093/genetics/32.5.505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Luria S. E., Delbrück M. Mutations of Bacteria from Virus Sensitivity to Virus Resistance. Genetics. 1943 Nov;28(6):491–511. doi: 10.1093/genetics/28.6.491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. MARKOVITZ A. REGULATORY MECHANISMS FOR SYNTHESIS OF CAPSULAR POLYSACCHARIDE IN MUCOID MUTANTS OF ESCHERICHIA COLI K12. Proc Natl Acad Sci U S A. 1964 Feb;51:239–246. doi: 10.1073/pnas.51.2.239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. NAGATA T. The molecular synchrony and sequential replication of DNA in Escherichia coli. Proc Natl Acad Sci U S A. 1963 Apr;49:551–559. doi: 10.1073/pnas.49.4.551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Nelson T. C., Lederberg J. POSTZYGOTIC ELIMINATION OF GENETIC FACTORS IN ESCHERICHIA COLI. Proc Natl Acad Sci U S A. 1954 Jun;40(6):415–419. doi: 10.1073/pnas.40.6.415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. PARANCHYCH W., GRAHAM A. F. Isolation and properties of an RNA-containing bacteriophage. J Cell Comp Physiol. 1962 Dec;60:199–208. doi: 10.1002/jcp.1030600303. [DOI] [PubMed] [Google Scholar]
  18. SCHWARTZ N. M. NATURE OF ETHYL METHANESULFONATE INDUCED REVERSIONS OF LAC-MUTANTS OF ESCHERICHIA COLI. Genetics. 1963 Oct;48:1357–1375. doi: 10.1093/genetics/48.10.1357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. WEINBERG R. Gene transfer and elimination in bacterial crosses with strain K-12 of Escherichia coli. J Bacteriol. 1960 Apr;79:558–563. doi: 10.1128/jb.79.4.558-563.1960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. WOLLMAN E. L., JACOB F. Sur le déterminisme génétique des types sexuels chez Escherichia coli K 12. C R Hebd Seances Acad Sci. 1958 Jul 28;247(4):536–539. [PubMed] [Google Scholar]
  21. ZINDER N. D. Lysogenization and superinfection immunity in Salmonella. Virology. 1958 Apr;5(2):291–326. doi: 10.1016/0042-6822(58)90025-4. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES