Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1965 Jul;90(1):193–204. doi: 10.1128/jb.90.1.193-204.1965

Ultrastructure and Ribosomes of Mycoplasma gallisepticum

Jack Maniloff a,1, Harold J Morowitz a, Russell J Barrnett a
PMCID: PMC315613  PMID: 16562017

Abstract

Maniloff, Jack (Yale University, New Haven, Conn.), Harold J. Morowitz, and Russell J. Barrnett. Ultrastructure and ribosomes of Mycoplasma gallisepticum. J. Bacteriol. 90:193–204. 1965.—The ultrastructure of Mycoplasma gallisepticum strain A5969 has been studied by electron microscopy (thin-section and negative staining), ultracentrifugation, and chemical analysis. The list of ultrastructure is: membrane, nuclear material, ribosomes, ribosomal structures, infra-bleb region, and blebs. The nuclear material, containing the cell's deoxyribonucleic acid, appears as an unbounded region containing 30-A fibrils. The ribosomes have a diameter of about 140 A, a ribonucleic acid-protein ratio of 0.68, and an uncorrected sedimentation coefficient of 70.2S. The 70.2S particle can be broken into 49.3S and 32.4S particles. Ribosomal arrays were found filling the intracytoplasmic space between the nuclear material and the membrane. Under certain conditions, these arrays formed cylindrical arrangements of ribosomes. The infra-bleb region is composed of a granular material, although little internal structure could be found. The bleb was highly structured.

Full text

PDF
193

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BAYLEY S. T. PHYSICAL STUDIES ON RIBOSOMES FROM PEA SEEDLINGS. J Mol Biol. 1964 Feb;8:231–238. doi: 10.1016/s0022-2836(64)80132-7. [DOI] [PubMed] [Google Scholar]
  2. BEER M., ZOBEL C. R. Electron stains. II: Electron microscopic studies on the visibility of stained DNA molecules. J Mol Biol. 1961 Dec;3:717–726. doi: 10.1016/s0022-2836(61)80076-4. [DOI] [PubMed] [Google Scholar]
  3. CERIOTTI G. Determination of nucleic acids in animal tissues. J Biol Chem. 1955 May;214(1):59–70. [PubMed] [Google Scholar]
  4. DELEY J. ON THE UNITY OF BACTERIAL RIBOSOMES. J Gen Microbiol. 1964 Feb;34:219–227. doi: 10.1099/00221287-34-2-219. [DOI] [PubMed] [Google Scholar]
  5. Hultin T. Ribosomal functions related to protein synthesis. Int Rev Cytol. 1964;16:1–36. doi: 10.1016/s0074-7696(08)60292-2. [DOI] [PubMed] [Google Scholar]
  6. KILKSON R. BIOLOGICAL STRUCTURE. Proc Natl Acad Sci U S A. 1964 Apr;51:543–550. doi: 10.1073/pnas.51.4.543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  8. MESELSON M., NOMURA M., BRENNER S., DAVERN C., SCHLESSINGER D. CONSERVATION OF RIBOSOMES DURING BACTERIAL GROWTH. J Mol Biol. 1964 Sep;9:696–711. doi: 10.1016/s0022-2836(64)80176-5. [DOI] [PubMed] [Google Scholar]
  9. MORGAN R. S. A new form of ribosome from yeast. J Mol Biol. 1962 Feb;4:115–117. doi: 10.1016/s0022-2836(62)80043-6. [DOI] [PubMed] [Google Scholar]
  10. WATSON J. D., CRICK F. H. Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature. 1953 Apr 25;171(4356):737–738. doi: 10.1038/171737a0. [DOI] [PubMed] [Google Scholar]
  11. WATSON M. L., ALDRIDGE W. G. Methods for the use of indium as an electron stain for nucleic acids. J Biophys Biochem Cytol. 1961 Nov;11:257–272. doi: 10.1083/jcb.11.2.257. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES