Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1965 Aug;90(2):495–503. doi: 10.1128/jb.90.2.495-503.1965

Unstable Genetic Transformation in Bacillus subtilis and the Mode of Inheritance in Unstable Clones

V N Iyer 1
PMCID: PMC315670  PMID: 14329465

Abstract

Iyer, V. N. (Canada Department of Agriculture, Ottawa, Ont., Canada). Unstable genetic transformation in Bacillus subtilis and the mode of inheritance in unstable clones. J. Bacteriol. 90:495–503. 1965.—An ultraviolet-induced mutant has been isolated from the double auxotroph of Bacillus subtilis (bearing the linked mutations try2 and his2). This mutant has the property of yielding unstable transformants which, in the case of transformation to prototrophy, can be recognized by reduced colony size on minimal agar. Unstable transformant clones usually become stabilized early during the development of the clone (within 12 generations). Analyses of genotypes emerging from such clones on stabilization indicate that in some of these clones the exogenote is transmitted linearly; its integrity is sufficiently preserved that it can participate in two independent recombination events in two different cells. Genetic markers on the exogenote are expressed in situations where genetic integration has not occurred.

Full text

PDF

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anagnostopoulos C., Spizizen J. REQUIREMENTS FOR TRANSFORMATION IN BACILLUS SUBTILIS. J Bacteriol. 1961 May;81(5):741–746. doi: 10.1128/jb.81.5.741-746.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BODMER W. F., GANESAN A. T. BIOCHEMICAL AND GENETIC STUDIES OF INTEGRATION AND RECOMBINATION IN BACILLUS SUBTILIS TRANSFORMATION. Genetics. 1964 Oct;50:717–738. doi: 10.1093/genetics/50.4.717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. EPHRATI-ELIZUR E., SRINIVASAN P. R., ZAMENHOF S. Genetic analysis, by means of transformation, of histidine linkage groups in Bacillus subtilis. Proc Natl Acad Sci U S A. 1961 Jan 15;47:56–63. doi: 10.1073/pnas.47.1.56. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. FOX M. S., ALLEN M. K. ON THE MECHANISM OF DEOXYRIBONUCLEATE INTEGRATION IN PNEUMOCOCCAL TRANSFORMATION. Proc Natl Acad Sci U S A. 1964 Aug;52:412–419. doi: 10.1073/pnas.52.2.412. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. FOX M. S., HOTCHKISS R. D. Fate of transforming deoxyribonucleate following fixation by transformable bacteria. Nature. 1960 Sep 17;187:1002–1006. doi: 10.1038/1871002a0. [DOI] [PubMed] [Google Scholar]
  6. FOX M. S. The fate of transforming deoxyribonucleate following fixation by transformable bacteria. III. Proc Natl Acad Sci U S A. 1962 Jun 15;48:1043–1048. doi: 10.1073/pnas.48.6.1043. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Iyer V N, Ravin A W. Integration and Expression of Different Lengths of DNA during the Transformation of Pneumococcus to Erythromycin Resistance. Genetics. 1962 Oct;47(10):1355–1368. doi: 10.1093/genetics/47.10.1355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. LACKS S., HOTCHKISS R. D. A study of the genetic material determining an enzyme in Pneumococcus. Biochim Biophys Acta. 1960 Apr 22;39:508–518. doi: 10.1016/0006-3002(60)90205-5. [DOI] [PubMed] [Google Scholar]
  9. LACKS S. Molecular fate of DNA in genetic transformation of Pneumococcus. J Mol Biol. 1962 Jul;5:119–131. doi: 10.1016/s0022-2836(62)80067-9. [DOI] [PubMed] [Google Scholar]
  10. Morse M L, Lederberg E M, Lederberg J. Transductional Heterogenotes in Escherichia Coli. Genetics. 1956 Sep;41(5):758–779. doi: 10.1093/genetics/41.5.758. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Nester E W, Schafer M, Lederberg J. Gene Linkage in DNA Transfer: A Cluster of Genes Concerned with Aromatic Biosynthesis in Bacillus Subtilis. Genetics. 1963 Apr;48(4):529–551. doi: 10.1093/genetics/48.4.529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. OPARA-KUBINSKA Z., KURYLO-BOROWSKA Z., SZYBALSKI W. Genetic transformation studies. II. Effect of ultraviolet light on the molecular properties of normal and halogenated deoxyribonucleic acid. Biochim Biophys Acta. 1963 Jun 25;72:298–309. doi: 10.1016/0006-3002(63)90245-2. [DOI] [PubMed] [Google Scholar]
  13. Ravin A W. Linked Mutations Borne by Deoxyribonucleic Acid Controlling the Synthesis of Capsular Polysaccharide in Pneumococcusx. Genetics. 1960 Oct;45(10):1387–1404. doi: 10.1093/genetics/45.10.1387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. STOCKER B. A. Abortive transduction of motility in Salmonella; a nonreplicated gene transmitted through many generations to a single descendant. J Gen Microbiol. 1956 Dec;15(3):575–598. doi: 10.1099/00221287-15-3-575. [DOI] [PubMed] [Google Scholar]
  15. STOCKER B. A. TRANSFORMATION OF BACILLUS SUBTILIS TO MOTILITY AND PROTOTROPHY: MICROMANIPULATIVE ISOLATION OF BACTERIA OF TRANSFORMED PHENOTYPE. J Bacteriol. 1963 Oct;86:797–804. doi: 10.1128/jb.86.4.797-804.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. TAKAHASHI I. Transducing phages for Bacillus subtilis. J Gen Microbiol. 1963 May;31:211–217. doi: 10.1099/00221287-31-2-211. [DOI] [PubMed] [Google Scholar]
  17. THORNE C. B. Transduction in Bacillus subtilis. J Bacteriol. 1962 Jan;83:106–111. doi: 10.1128/jb.83.1.106-111.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. VOLL M. J., GOODGAL S. H. Recombination during transformation in Hemophilus influenzae. Proc Natl Acad Sci U S A. 1961 Apr 15;47:505–512. doi: 10.1073/pnas.47.4.505. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES