Abstract
Lee, Chin K. (North Carolina State of the University of North Carolina, Raleigh), and Walter J. Dobrogosz. Oxidative metabolism in Pediococcus pentosaceus. III. Glucose dehydrogenase system. J. Bacteriol. 90:653–660. 1965.—A method was developed for the purification of glucose dehydrogenase from Pediococcus pentosaceus Az-25-5. The procedures included treatments with protamine sulfate, ammonium sulfate, and heat in addition to acid precipitation, calcium phosphate adsorption and elution, and diethylaminoethyl-Sephadex column chromatography. The final preparation thus obtained was purified 255-fold and exhibited both similarities and dissimilarities to the same enzyme isolated from other sources. The enzyme is absolutely specific for nicotinamide adenine dinucleotide phosphate (NADP) as a cofactor, and oxidizes only glucose or its analogue 2-deoxyglucose via the following reversible reaction: β-d-glucose + NADP ⇌ d-glucono-δ-lactone + NADPH2 + H+. Km values were 2.3 × 10−2 for glucose and 2 × 10−4 for NADP. Monovalent cations were required for stability of the enzyme and stimulated activity. The pH optimum was 7.0, and the equilibrium constant was determined to be 13.4 × 10−7 at pH 6.4. Among the Lactobacillaceae, glucose dehydrogenase activity was found to be essentially limited to members of the genus Pediococcus. Studies on the enzymatic composition of P. pentosaceus viewed in conjunction with other available data led to the conclusion that this enzyme is not involved to any significant extent in the energy metabolism of this organism.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BACH J. A., SADOFF H. L. Aerobic sporulating bacteria. I. Glucose dehydrogenase of Bacillus cereus. J Bacteriol. 1962 Apr;83:699–707. doi: 10.1128/jb.83.4.699-707.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
- CHELDELIN V. H., KING T. E. Glucose oxidation and cytochromes in solubilized particulate fractions of Acetobacter suboxydans. J Biol Chem. 1957 Jan;224(1):579–590. [PubMed] [Google Scholar]
- CHRISTENSEN M. D., ALBURY M. N., PEDERSON C. S. Variation in the acetic acid-lactic acid ratio among the lactic acid bacteria. Appl Microbiol. 1958 Sep;6(5):316–318. doi: 10.1128/am.6.5.316-318.1958. [DOI] [PMC free article] [PubMed] [Google Scholar]
- CHURCH B. D., HALVORSON H. Intermediate metabolism of aerobic spores. I. Activation of glucose oxidation in spores of Bacillus cereus var terminalis. J Bacteriol. 1957 Apr;73(4):470–476. doi: 10.1128/jb.73.4.470-476.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DALBY A., BLACKWOOD A. C. Oxidation of sugars by an enzyme preparation from Aerobacter aerogenes. Can J Microbiol. 1955 Dec;1(9):733–742. doi: 10.1139/m55-087. [DOI] [PubMed] [Google Scholar]
- DE LEY J. Comparative carbohydrate metabolism and localization of enzymes in Pseudomonas and related microorganisms. J Appl Bacteriol. 1960 Dec;23:400–441. doi: 10.1111/j.1365-2672.1960.tb00215.x. [DOI] [PubMed] [Google Scholar]
- DE LEY J., STOUTHAMER A. J. The mechanism and localization of hexonate metabolism in Acetobacter suboxydans and Acetobacter melanogenum. Biochim Biophys Acta. 1959 Jul;34:171–183. doi: 10.1016/0006-3002(59)90245-8. [DOI] [PubMed] [Google Scholar]
- DELWICHE E. A. Catalase of Pedicoccus cerevisiae. J Bacteriol. 1961 Mar;81:416–418. doi: 10.1128/jb.81.3.416-418.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DOBROGOSZ W. J., DEMOSS R. D. GLUCOSE DEHYDROGENASE ACTIVITY IN PEDIOCOCCUS PENTOSACEUS. J Bacteriol. 1963 Jul;86:164–165. doi: 10.1128/jb.86.1.164-165.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DOBROGOSZ W. J., DEMOSS R. D. PENTOSE UTILIZATION BY PEDIOCOCCUS PENTOSACEUS. J Bacteriol. 1963 Jun;85:1356–1364. doi: 10.1128/jb.85.6.1356-1364.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DOBROGOSZ W. J., STONE R. W. Oxidative metabolism in Pediococcus pentosaceus. I. Role of oxygen and catalase. J Bacteriol. 1962 Oct;84:716–723. doi: 10.1128/jb.84.4.716-723.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DOBROGOSZ W. J., STONE R. W. Oxidative metabolism in Pediococcus pentosaceus. II. Factors controlling the formation of oxidative activities. J Bacteriol. 1962 Oct;84:724–729. doi: 10.1128/jb.84.4.724-729.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DOI R., HALVORSON H., CHURCH B. Intermediate metabolism of aerobic spores. III. The mechanism of glucose and hexose phosphate oxidation in extracts of Bacillus cereus spores. J Bacteriol. 1959 Jan;77(1):43–54. doi: 10.1128/jb.77.1.43-54.1959. [DOI] [PMC free article] [PubMed] [Google Scholar]
- JENSEN E. M., SEELEY H. W. The nutrition and physiology of the genus Pediococcus. J Bacteriol. 1954 Apr;67(4):484–488. doi: 10.1128/jb.67.4.484-488.1954. [DOI] [PMC free article] [PubMed] [Google Scholar]
- JOHNSTON M. A., DELWICHE E. A. Catalase of the Lacto-bacillaceae. J Bacteriol. 1962 Apr;83:936–938. doi: 10.1128/jb.83.4.936-938.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Lockwood L. B., Tabenkin B., Ward G. E. The Production of Gluconic Acid and 2-Keto-Gluconic Acid from Glucose by Species of Pseudomonas and Phytomonas. J Bacteriol. 1941 Jul;42(1):51–61. doi: 10.1128/jb.42.1.51-61.1941. [DOI] [PMC free article] [PubMed] [Google Scholar]
- METZGER R. P., WILCOX S. S., WICK A. N. STUDIES WITH RAT LIVER GLUCOSE DEHYDROGENASE. J Biol Chem. 1964 Jun;239:1769–1772. [PubMed] [Google Scholar]
- PEDERSON C. S. The genus Pediococcus. Bacteriol Rev. 1949 Dec;13(4):225–232. doi: 10.1128/br.13.4.225-232.1949. [DOI] [PMC free article] [PubMed] [Google Scholar]
- STOKES F. N., CAMPBELL J. J. R. The oxidation of glucose and gluconic acid by dried cells of Pseudomonas aeruginosa. Arch Biochem. 1951 Jan;30(1):121–125. [PubMed] [Google Scholar]
- STRECKER H. J., KORKES S. Glucose dehydrogenase. J Biol Chem. 1952 May;196(2):769–784. [PubMed] [Google Scholar]
- WOOD W. A., SCHWERDT R. F. Carbohydrate oxidation by Pseudomonas fluorescens. I. The mechanism of glucose and gluconate oxidation. J Biol Chem. 1953 Apr;201(2):501–511. [PubMed] [Google Scholar]
- Yudkin J. The dehydrogenases of Bacterium coli: The effect of dilution: with a note on the existence of a co-enzyme of glucose dehydrogenase. Biochem J. 1933;27(6):1849–1858. doi: 10.1042/bj0271849. [DOI] [PMC free article] [PubMed] [Google Scholar]
