Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1965 Nov;90(5):1174–1181. doi: 10.1128/jb.90.5.1174-1181.1965

Drug Resistance of Enteric Bacteria V. High Frequency of Transduction of R Factors with Bacteriophage Epsilon

Mitsuo Kameda 1, Kenji Harada 1, Mitsue Suzuki 1, Susumu Mitsuhashi 1
PMCID: PMC315799  PMID: 5848323

Abstract

Kameda, Mitsuo (Gunma University, Maebashi, Japan), Kenji Harada, Mitsue Suzuki, and Susumu Mitsuhashi. Drug resistance of enteric bacteria. V. High frequency of transduction of R factors with bacteriophage epsilon. J. Bacteriol. 90:1174–1181. 1965.—In the transduction of R factors with phage ε15, a lysate capable of transducing the markers for (TC) or (CM.SM.SA) resistance at high frequency was obtained. The transducing agent is a defective element called ε15dR23 which lacks certain functions of phage ε15. After lysogenization with normal ε15 phage and ultraviolet (UV) induction, strains carrying the ε15dR23 element produce lysates which have a high frequency of transduction (HFT) on group E1Salmonella. Lytic lysates prepared on phage ε15 sensitive strain with the ε15dR23 element have a low frequency of transduction (LFT). Lytic growth of phage ε34 on an ε15dR23 strain or UV induction of an ε34 lysogenic strain containing ε15dR23 results in LFT lysates on group E2Salmonella. On UV induction, group E2Salmonella15 lysogens) with the ε15dR23 element give lysates which are HFT on group E1Salmonella but are LFT when tested on group E2Salmonella. In all instances, the production of drug-resistant transductants requires infection of the cell with only a single ε15dR23 element. It appears that the resistance region of the R factor has replaced that portion of phage genome which is essential for vegetative replication and superinfection immunity. The ε15dR23 element does not contain the genetic determinants of the R factor responsible for transmissibility, inhibition of F mating, and interference between two R factors.

Full text

PDF
1174

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ADELBERG E. A., BURNS S. N. Genetic variation in the sex factor of Escherichia coli. J Bacteriol. 1960 Mar;79:321–330. doi: 10.1128/jb.79.3.321-330.1960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. ARBER W., KELLENBERGER G., WEIGLE J. La défectuosité du phage lambda transducteur. Schweiz Z Pathol Bakteriol. 1957;20(5):659–665. [PubMed] [Google Scholar]
  3. Adams J. N., Luria S. E. TRANSDUCTION BY BACTERIOPHAGE P1: ABNORMAL PHAGE FUNCTION OF THE TRANSDUCING PARTICLES. Proc Natl Acad Sci U S A. 1958 Jun;44(6):590–594. doi: 10.1073/pnas.44.6.590. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. CAMPBELL A. Transduction and segregation in Escherichia coli K12. Virology. 1957 Oct;4(2):366–384. doi: 10.1016/0042-6822(57)90070-3. [DOI] [PubMed] [Google Scholar]
  5. GAREN A., ZINDER N. D. Radiological evidence for partial genetic homology between bacteriophage and host bacteria. Virology. 1955 Nov;1(4):347–376. doi: 10.1016/0042-6822(55)90030-1. [DOI] [PubMed] [Google Scholar]
  6. HARADA K., KAMEDA M., SUZUKI M., MITSUHASHI S. DRUG RESISTANCE OF ENTERIC BACTERIA. II. TRANSDUCTION OF TRANSMISSIBLE DRUG-RESISTANCE (R) FACTORS WITH PHAGE EPSILON. J Bacteriol. 1963 Dec;86:1332–1338. doi: 10.1128/jb.86.6.1332-1338.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. KONDO E., HARADA K., MITSUHASHI S. Drug-resistance of enteric bacteria. 12. Transduction of the transmissible drug resistance factor by bacteriophage Plkc. Jpn J Exp Med. 1962 Feb;32:139–147. [PubMed] [Google Scholar]
  8. LENNOX E. S. Transduction of linked genetic characters of the host by bacteriophage P1. Virology. 1955 Jul;1(2):190–206. doi: 10.1016/0042-6822(55)90016-7. [DOI] [PubMed] [Google Scholar]
  9. LURIA S. E., ADAMS J. N., TING R. C. Transduction of lactose-utilizing ability among strains of E. coli and S. dysenteriae and the properties of the transducing phage particles. Virology. 1960 Nov;12:348–390. doi: 10.1016/0042-6822(60)90161-6. [DOI] [PubMed] [Google Scholar]
  10. MATSUSHIRO A. Specialized transduction of tryptophan markers in Escherichia coli K12 by bacteriophage phi-80. Virology. 1963 Apr;19:475–482. doi: 10.1016/0042-6822(63)90041-2. [DOI] [PubMed] [Google Scholar]
  11. MITSUHASHI S., HARADA K., KAMEDA M. Elimination of transmissible drug-resistance by treatment with acriflavin. Nature. 1961 Mar 18;189:947–947. doi: 10.1038/189947a0. [DOI] [PubMed] [Google Scholar]
  12. NAKAYA R., NAKAMURA A., MURATA Y. Resistance transfer agents in Shigella. Biochem Biophys Res Commun. 1960 Dec;3:654–659. doi: 10.1016/0006-291x(60)90081-4. [DOI] [PubMed] [Google Scholar]
  13. STARLINGER P. Uber einen Defekt des transduzierenden Salmonella-Phagen P22. Z Naturforsch B. 1958 Aug;13B(8):489–493. [PubMed] [Google Scholar]
  14. SUGINO Y., HIROTA Y. Conjugal fertility associated with resistance factor R in Escherichia coli. J Bacteriol. 1962 Nov;84:902–910. doi: 10.1128/jb.84.5.902-910.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. UETAKE H., HAGIWARA S., MAKINO T. [Mechanism of antigenic conversion after exposure to antibacterial serum]. Sapporo Igaku Zasshi. 1961 Jul;20:12–15. [PubMed] [Google Scholar]
  16. ZINDER N. D. Infective heredity in bacteria. Cold Spring Harb Symp Quant Biol. 1953;18:261–269. doi: 10.1101/sqb.1953.018.01.037. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES