Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1965 Nov;90(5):1200–1204. doi: 10.1128/jb.90.5.1200-1204.1965

Nucleic Acid Homologies of Selected Bacteria, L Forms, and Mycoplasma Species1

M Rogul 1,2,3, Z A McGee 1,2,3, R G Wittler 1,2,3, Stanley Falkow 1,2,3
PMCID: PMC315803  PMID: 5848325

Abstract

Rogul, M. (Walter Reed Army Institute of Research, Washington, D.C.), Z. A. McGee, R. G. Wittler, and Stanley Falkow. Nucleic acid homologies of selected bacteria, L forms, and Mycoplasma species. J. Bacteriol. 90:1200–1204. 1965.—The molar per cent of guanine plus cytosine (G + C) in the deoxyribonucleic acids (DNA) of Proteus mirabilis, strain 9, and its stable L form was determined by thermal denaturation and found to be approximately 39.5% G + C. The DNA homologies of this bacterium and its L form were estimated by the agar-column technique and were equivalent in their abilities to anneal and form specific duplexes. The next series of comparisons were performed between two Mycoplasma species and their often suggested bacterial parent. The G + C ratios of M. gallisepticum (32.7%), M. gallinarum (28.1%), and Haemophilus gallinarum (41.9%) varied to a high degree. In the homologous system, the denatured DNA of H. gallinarum trapped in agar bound approximately 40% of its sheared, denatured, and H3-labeled DNA. In comparison, the nucleic acids of M. gallinarum and M. gallisepticum were incapable of binding the labeled DNA of H. gallinarum. These findings provided evidence that the two strains of Mycoplasma were not derived from H. gallinarum.

Full text

PDF
1200

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. CATLIN B. W., CUNNINGHAM L. S. GENETIC TRANSFORMATION OF NEISSERIA CATARRHALIS BY DEOXYRIBONUCLEATE PREPARATIONS HAVING DIFFERENT AVERAGE BASE COMPOSITIONS. J Gen Microbiol. 1964 Dec;37:341–352. doi: 10.1099/00221287-37-3-341. [DOI] [PubMed] [Google Scholar]
  2. CATLIN B. W., CUNNINGHAM L. S. Transforming activities and base contents of deoxyribonucleate preparations from various Neisseriae. J Gen Microbiol. 1961 Oct;26:303–312. doi: 10.1099/00221287-26-2-303. [DOI] [PubMed] [Google Scholar]
  3. DOWELL V. R., Jr, LOPER J. C., HILL E. O. CONSTANCY OF DEOXYRIBONUCLEIC ACID BASE COMPOSITION IN THE TRANSITION OF SPHAEROPHORUS NECROPHORUS FROM BACILLI TO LARGE BODIES. J Bacteriol. 1964 Dec;88:1805–1807. doi: 10.1128/jb.88.6.1805-1807.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. EDWARD D. G. Biology of the pleuropneumonialike organisms. Introduction. Ann N Y Acad Sci. 1960 Jan 15;79:309–311. doi: 10.1111/j.1749-6632.1960.tb42692.x. [DOI] [PubMed] [Google Scholar]
  5. EDWARD D. G., KANAREK A. D. Organisms of the pleuropneumonia group of avian origin: their classification into species. Ann N Y Acad Sci. 1960 Jan 15;79:696–702. doi: 10.1111/j.1749-6632.1960.tb42744.x. [DOI] [PubMed] [Google Scholar]
  6. GUILD W. R. Evidence for intramolecular heterogeneity in pneumococcal DNA. J Mol Biol. 1963 Mar;6:214–229. doi: 10.1016/s0022-2836(63)80071-6. [DOI] [PubMed] [Google Scholar]
  7. JOHNSON E. M., FALKOW S., BARON L. S. RECIPIENT ABILITY OF SALMONELLA TYPHOSA IN GENETIC CROSSES WITH ESCHERICHIA COLI. J Bacteriol. 1964 Jan;87:54–60. doi: 10.1128/jb.87.1.54-60.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. JONES A. S., WALKER R. T. Isolation and analysis of the deoxyribonucleic acid of Mycoplasma mycoides var. Capri. Nature. 1963 May 11;198:588–589. doi: 10.1038/198588a0. [DOI] [PubMed] [Google Scholar]
  9. KELTON W. H., GENTRY R. F., LUDWIG E. H. Derivation of grampositive cocci from pleuropneumonialike organisms. Ann N Y Acad Sci. 1960 Jan 15;79:410–421. doi: 10.1111/j.1749-6632.1960.tb42706.x. [DOI] [PubMed] [Google Scholar]
  10. LYNN R. J., SMITH P. F. Nucleic acid content of pleuropneumonialike organisms from human sources. J Bacteriol. 1957 Dec;74(6):811–817. doi: 10.1128/jb.74.6.811-817.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. MARMUR J., DOTY P. Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol. 1962 Jul;5:109–118. doi: 10.1016/s0022-2836(62)80066-7. [DOI] [PubMed] [Google Scholar]
  12. MCCARTHY B. J., BOLTON E. T. An approach to the measurement of genetic relatedness among organisms. Proc Natl Acad Sci U S A. 1963 Jul;50:156–164. doi: 10.1073/pnas.50.1.156. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. MCCARTHY B. J., BOLTON E. T. INTERACTION OF COMPLEMENTARY RNA AND DNA. J Mol Biol. 1964 Feb;8:184–200. doi: 10.1016/s0022-2836(64)80128-5. [DOI] [PubMed] [Google Scholar]
  14. MOROWITZ H. J., TOURTELLOTTE M. E., GUILD W. R., CASTRO E., WOESE C. The chemical composition and submicroscopic morphology of Mycoplasma gallisepticum, avian PPLO 5969. J Mol Biol. 1962 Feb;4:93–103. doi: 10.1016/s0022-2836(62)80041-2. [DOI] [PubMed] [Google Scholar]
  15. Marmur J., Seaman E., Levine J. INTERSPECIFIC TRANSFORMATION IN BACILLUS. J Bacteriol. 1963 Feb;85(2):461–467. doi: 10.1128/jb.85.2.461-467.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. McGee Z. A., Rogul M., Falkow S., Wittler R. G. The relationship of Mycoplasma pneumoniae (Eaton agent) to Streptococcus MG: application of genetic tests to determine relatedness of L-forms and PPLO to bacteria. Proc Natl Acad Sci U S A. 1965 Aug;54(2):457–461. doi: 10.1073/pnas.54.2.457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. McKay K. A., Taylor J. R. The Reversion Of L Type Cultures Previously Described As Pleuropneumonialike and Associated with Chronic Respiratory Disease-To An Organism Resembling Gallinarum. Can J Comp Med Vet Sci. 1954 Jan;18(1):7–12. [PMC free article] [PubMed] [Google Scholar]
  18. NEIMARK H. C., PENE J. J. CHARACTERIZATION OF PLEUROPNEUMONIA-LIKE ORGANISMS BY DEOXYRIBONUCLEIC ACID COMPOSITION. Proc Soc Exp Biol Med. 1965 Feb;118:517–519. doi: 10.3181/00379727-118-29893. [DOI] [PubMed] [Google Scholar]
  19. PANOS C. CELLULAR PHYSIOLOGY DURING LOGARITHMIC GROWTH OF A STREPTOCOCCAL L-FORM. J Gen Microbiol. 1965 Apr;39:131–138. doi: 10.1099/00221287-39-1-131. [DOI] [PubMed] [Google Scholar]
  20. SCHILDKRAUT C. L., MARMUR J., DOTY P. The formation of hybrid DNA molecules and their use in studies of DNA homologies. J Mol Biol. 1961 Oct;3:595–617. doi: 10.1016/s0022-2836(61)80024-7. [DOI] [PubMed] [Google Scholar]
  21. SMITH P. F. COMPARATIVE PHYSIOLOGY OF PLEUROPNEUMONIA-LIKE AND L-TYPE ORGANISMS. Bacteriol Rev. 1964 Jun;28:97–125. doi: 10.1128/br.28.2.97-125.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. SMITH P. F., PEOPLES D. M., MORTON H. E. Conversion of pleuropneumonialike organisms to bacteria. Proc Soc Exp Biol Med. 1957 Nov;96(2):550–553. doi: 10.3181/00379727-96-23536. [DOI] [PubMed] [Google Scholar]
  23. SMITH P. F., ROTHBLAT G. H. Relation of PPLO to bacteria. Ann N Y Acad Sci. 1960 Jan 15;79:461–464. doi: 10.1111/j.1749-6632.1960.tb42712.x. [DOI] [PubMed] [Google Scholar]
  24. WITTLER R. G., CARY S. G., LINDBERG R. B. Reversion of a pleuropneumonia-like organism to a Corynebacterium during tissue culture passage. J Gen Microbiol. 1956 Jul;14(3):763–774. doi: 10.1099/00221287-14-3-763. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES