Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1965 Nov;90(5):1355–1364. doi: 10.1128/jb.90.5.1355-1364.1965

Autolytic Mechanism for Spheroplast Formation in Bacillus cereus and Escherichia coli

Raam R Mohan a, Donald P Kronish a, Roland S Pianotti a, Ray L Epstein a,1, Benjamin S Schwartz a
PMCID: PMC315824  PMID: 4954555

Abstract

Mohan, Raam R. (Warner-Lambert Research Institute, Morris Plains, N.J.), Donald P. Kronish, Roland S. Pianotti, Ray L. Epstein, and Benjamin S. Schwartz. Autolytic mechanism for spheroplast formation in Bacillus cereus and Escherichia coli. J. Bacteriol. 90:1355–1364. 1965.—Spheroplasts of Bacillus cereus strain T and Escherichia coli B were prepared by incubating early log-phase cells in appropriate buffers and stabilizers for 3 hr at 30 and 37 C, respectively. Upon incubation in 0.05 m tris(hydroxymethyl)aminomethane buffer osmotically stabilized with 16% polyethylene glycol at pH 7.5, 99% of the B. cereus cells formed spheroplasts; 90% of the E. coli cells were converted to spheroplasts in 0.4 m sodium acetate buffer osmotically stabilized with 1.6 m sucrose at pH 6.0. The extent of spheroplast formation was determined by phase-contrast microscopic examination, by measuring the rate of fall of optical density in the reaction mixture when subjected to osmotic shock, and by viable intact cell counts. The effect of a selected group of metabolic inhibitors on the autolytic system of B. cereus and E. coli has been examined. B. cereus and E. coli wall components comprising 26% of the dry weight of the original cellular material were recovered from dialyzed fractions by precipitation in 70% ethyl alcohol. Chemical and chromatographic analysis of cell-wall hydrolysates from B. cereus and E. coli indicated the presence of glucosamine, alanine, lysine, glycine, aspartic acid, diaminopimelic acid, glutamic acid, and muramic acid.

Full text

PDF
1355

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BACHMANN B. J., BONNER D. M. Protoplasts from Neurospora crassa. J Bacteriol. 1959 Oct;78:550–556. doi: 10.1128/jb.78.4.550-556.1959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. CHAPMAN G. B. Cytological aspects of antimicrobial antibiosis. I. Cytological changes associated with the exposure of Escherichia coli to colistin sulfate. J Bacteriol. 1962 Jul;84:169–179. doi: 10.1002/path.1700840118. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. CUMMINS C. S., HARRIS H. Studies on the cell-wall composition and taxonomy of Actinomycetales and related groups. J Gen Microbiol. 1958 Feb;18(1):173–189. doi: 10.1099/00221287-18-1-173. [DOI] [PubMed] [Google Scholar]
  4. CUMMINS C. S., HARRIS H. The chemical composition of the cell wall in some gram-positive bacteria and its possible value as a taxonomic character. J Gen Microbiol. 1956 Jul;14(3):583–600. doi: 10.1099/00221287-14-3-583. [DOI] [PubMed] [Google Scholar]
  5. DARK F. A., STRANGE R. E. Bacterial protoplasts from Bacillus species by the action of autolytic enzymes. Nature. 1957 Oct 12;180(4589):759–760. doi: 10.1038/180759a0. [DOI] [PubMed] [Google Scholar]
  6. DAVIS B. D., MINGIOLI E. S. Mutants of Escherichia coli requiring methionine or vitamin B12. J Bacteriol. 1950 Jul;60(1):17–28. doi: 10.1128/jb.60.1.17-28.1950. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. GARVER J. C., EPSTEIN R. L. Method for rupturing large quantities of microorganisms. Appl Microbiol. 1959 Sep;7:318–319. doi: 10.1128/am.7.5.318-319.1959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. KELLENBERGER E., RYTER A. Cell wall and cytoplasmic membrane of Escherichia coli. J Biophys Biochem Cytol. 1958 May 25;4(3):323–326. doi: 10.1083/jcb.4.3.323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. KRONISH D. P., MOHAN R. R., SCHWARTZ B. S. DISTRIBUTION OF RADIOACTIVITY IN AUTOLYZED CELL WALL OF BACILLUS CEREUS DURING SPHEROPLAST FORMATION. J Bacteriol. 1964 Mar;87:581–587. doi: 10.1128/jb.87.3.581-587.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. LAGERWERFF J. V., OGATA G., EAGLE H. E. Control of osmotic pressure of culture solutions with polyethylene glycol. Science. 1961 May 12;133(3463):1486–1487. doi: 10.1126/science.133.3463.1486. [DOI] [PubMed] [Google Scholar]
  11. LEDERBERG J., ST CLAIR J. Protoplasts and L-type growth of Escherichia coli. J Bacteriol. 1958 Feb;75(2):143–160. doi: 10.1128/jb.75.2.143-160.1958. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lederberg J. BACTERIAL PROTOPLASTS INDUCED BY PENICILLIN. Proc Natl Acad Sci U S A. 1956 Sep;42(9):574–577. doi: 10.1073/pnas.42.9.574. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. MITCHELL P., MOYLE J. Autolytic release and osmotic properties of protoplasts from Staphylococcus aureus. J Gen Microbiol. 1957 Feb;16(1):184–194. doi: 10.1099/00221287-16-1-184. [DOI] [PubMed] [Google Scholar]
  14. Neu H. C., Heppel L. A. The release of ribonuclease into the medium when E. coli cells are converted to spheroplasts. Biochem Biophys Res Commun. 1964;14:109–112. doi: 10.1016/0006-291x(64)90238-4. [DOI] [PubMed] [Google Scholar]
  15. PROOM H., KNIGHT B. C. The minimal nutritional requirements of some species in the genus Bacillus. J Gen Microbiol. 1955 Dec;13(3):474–480. doi: 10.1099/00221287-13-3-474. [DOI] [PubMed] [Google Scholar]
  16. RONDLE C. J., MORGAN W. T. The determination of glucosamine and galactosamine. Biochem J. 1955 Dec;61(4):586–589. doi: 10.1042/bj0610586. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. SALTON M. R. The anatomy of the bacterial surface. Bacteriol Rev. 1961 Jun;25:77–99. doi: 10.1128/br.25.2.77-99.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. STEWART B. T., HALVORSON H. O. Studies on the spores of aerobic bacteria. I. The occurrence of alanine racemase. J Bacteriol. 1953 Feb;65(2):160–166. doi: 10.1128/jb.65.2.160-166.1953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. WEIBULL C. Bacterial protoplasts. Annu Rev Microbiol. 1958;12:1–26. doi: 10.1146/annurev.mi.12.100158.000245. [DOI] [PubMed] [Google Scholar]
  20. WEIDEL W., FRANK H., LEUTGEB W. Autolytic enzymes as a source of error in the preparation and study of gram-negative cell walls. J Gen Microbiol. 1963 Jan;30:127–130. doi: 10.1099/00221287-30-1-127. [DOI] [PubMed] [Google Scholar]
  21. WEIDEL W., FRANK H., MARTIN H. H. The rigid layer of the cell wall of Escherichia coli strain B. J Gen Microbiol. 1960 Feb;22:158–166. doi: 10.1099/00221287-22-1-158. [DOI] [PubMed] [Google Scholar]
  22. WORK E. Biochemistry of the bacterial cell wall. Nature. 1957 Apr 27;179(4565):841–847. doi: 10.1038/179841a0. [DOI] [PubMed] [Google Scholar]
  23. WORK E. The mucopeptides of bacterial cell walls. A review. J Gen Microbiol. 1961 Jun;25:169–189. doi: 10.1099/00221287-25-2-167. [DOI] [PubMed] [Google Scholar]
  24. YOUNG F. E., SPIZIZEN J. BIOCHEMICAL ASPECTS OF COMPETENCE IN THE BACILLUS SUBTILIS TRANSFORMATION SYSTEM. II. AUTOLYTIC ENZYME ACTIVITY OF CELL WALLS. J Biol Chem. 1963 Sep;238:3126–3130. [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES