Abstract
Schaefer, Werner B. (National Jewish Hospital, Denver, Colo.), and C. Willard Lewis, Jr. Effect of oleic acid on growth and cell structure of mycobacteria. J. Bacteriol. 90:1438–1447. 1965.—The growth-stimulatory effect of fatty acids on Mycobacterium kansasii and other mycobacterial species is associated with transient changes in the morphology of the bacteria. One change observed is the appearance of intracellular vacuoles separated by chromatinic crossbars. Evidence is presented that these changes are due to the rapid metabolic uptake and the accumulation of lipid in the form of globules. This process provides the cells with an internal reservoir of a preferred carbon and energy source. In certain mycobacterial species, including M. kansasii, the morphological changes are elicited by free and by esterified fatty acid; in others, only by free fatty acid. The latter strains apparently lack the enzyme to split the fatty acid ester.
Full text
PDFImages in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- AUBERT E. Cold stain for acid-fast bacteria. Can J Public Health. 1950 Jan;41(1):31–31. [PubMed] [Google Scholar]
- Burdon K. L. Fatty Material in Bacteria and Fungi Revealed by Staining Dried, Fixed Slide Preparations. J Bacteriol. 1946 Dec;52(6):665–678. doi: 10.1128/jb.52.6.665-678.1946. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HAROLD F. M. ENZYMIC AND GENETIC CONTROL OF POLYPHOSPHATE ACCUMULATION IN AEROBACTER AEROGENES. J Gen Microbiol. 1964 Apr;35:81–90. doi: 10.1099/00221287-35-1-81. [DOI] [PubMed] [Google Scholar]
- HEDGECOCK L. W. A requirement of oleic acid for growth of certain unclassified mycobacteria. Am Rev Respir Dis. 1962 Feb;85:285–286. doi: 10.1164/arrd.1962.85.2.285. [DOI] [PubMed] [Google Scholar]
- LINELL F., NORDEN A. Mycobacterium balnei, a new acid-fast bacillus occurring in swimming pools and capable of producing skin lesions in humans. Acta Tuberc Scand Suppl. 1954;33:1–84. [PubMed] [Google Scholar]
- MASON D. J., POWELSON D. M. Nuclear division as observed in live bacteria by a new technique. J Bacteriol. 1956 Apr;71(4):474–479. doi: 10.1128/jb.71.4.474-479.1956. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ROBERTSON J. D. The ultrastructure of cell membranes and their derivatives. Biochem Soc Symp. 1959;16:3–43. [PubMed] [Google Scholar]
- RYTER A., KELLENBERGER E., BIRCHANDERSEN A., MAALOE O. Etude au microscope électronique de plasmas contenant de l'acide désoxyribonucliéique. I. Les nucléoides des bactéries en croissance active. Z Naturforsch B. 1958 Sep;13B(9):597–605. [PubMed] [Google Scholar]
- SCHAEFER W. B. Growth requirements of dysgonic and eugonic strains of Mycobacterium tuberculosis var. bovis. J Exp Med. 1952 Sep;96(3):207–219. doi: 10.1084/jem.96.3.207. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SCHAEFER W. B., MARSHAK A., BURKHART B. The growth of Mycobacterium tuberculosis as a function of its nutrients. J Bacteriol. 1949 Nov;58(5):549–563. doi: 10.1128/jb.58.5.549-563.1949. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SMITH I. W., WILKINSON J. F., DUGUID J. P. Volutin production in Aerobacter aerogenes due to nutrient imbalance. J Bacteriol. 1954 Oct;68(4):450–463. doi: 10.1128/jb.68.4.450-463.1954. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WAYNE L. G., DOUBEK J. R., RUSSELL R. L. CLASSIFICATION AND IDENTIFICATION OF MYCOBACTERIA. I. TESTS EMPLOYING TWEEN 80 AS SUBSTRATE. Am Rev Respir Dis. 1964 Oct;90:588–597. doi: 10.1164/arrd.1964.90.4.588. [DOI] [PubMed] [Google Scholar]