Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1965 Dec;90(6):1578–1588. doi: 10.1128/jb.90.6.1578-1588.1965

Protein Turnover in Escherichia coli as Measured with an Equilibration Apparatus

Elliot M Levine a,1
PMCID: PMC315864  PMID: 5322719

Abstract

Levine, Elliot M. (National Institutes of Health, Bethesda, Md.). Protein turnover in Escherichia coli as measured with an equilibration apparatus. J. Bacteriol. 90:1578–1588. 1965.—Intercellular protein turnover (the reutilization by one cell of amino acids derived from the protein of another cell) occurs at a rate of 0.16 to 0.18% per hour in nongrowing cultures of Escherichia coli, as determined in an apparatus that rapidly equilibrates the culture fluids of two separated bacterial suspensions.

Full text

PDF
1578

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Borek E., Ponticorvo L., Rittenberg D. PROTEIN TURNOVER IN MICRO-ORGANISMS. Proc Natl Acad Sci U S A. 1958 May;44(5):369–374. doi: 10.1073/pnas.44.5.369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. COHN M. Contributions of studies on the beta-galactosidase of Escherichia coli to our understanding of enzyme synthesis. Bacteriol Rev. 1957 Sep;21(3):140–168. doi: 10.1128/br.21.3.140-168.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. DAVIDSON J. D., FEIGELSON P. Practical aspects of internal-sample liquid-scintillation counting. Int J Appl Radiat Isot. 1957 Apr;2(1):1–18. doi: 10.1016/0020-708x(57)90021-2. [DOI] [PubMed] [Google Scholar]
  4. DAVIS B. D. Nonfiltrability of the agents of genetic recombination in Escherichia coli. J Bacteriol. 1950 Oct;60(4):507–508. doi: 10.1128/jb.60.4.507-508.1950. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. EAGLE H., PIEZ K. A., FLEISCHMAN R., OYAMA V. I. Protein turnover in mammaliar cell cultures. J Biol Chem. 1959 Mar;234(3):592–597. [PubMed] [Google Scholar]
  6. EAGLE H., PIEZ K. The population-dependent requirement by cultured mammalian cells for metabolites which they can synthesize. J Exp Med. 1962 Jul 1;116:29–43. doi: 10.1084/jem.116.1.29. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. GERSHANOVITCH V. N., AVDEEVA A. V., GOLDFARB D. M. The disturbance of permeability in spheroplasts obtained by means of treatment with "ghosts" of T2-phage. Biochem Biophys Res Commun. 1963 May 28;11:360–366. doi: 10.1016/0006-291x(63)90123-2. [DOI] [PubMed] [Google Scholar]
  8. HALVORSON H. Intracellular protein and nucleic acid turnover in resting yeast cells. Biochim Biophys Acta. 1958 Feb;27(2):255–266. doi: 10.1016/0006-3002(58)90332-9. [DOI] [PubMed] [Google Scholar]
  9. KOCH A. L. Death of bacteria in growing culture. J Bacteriol. 1959 May;77(5):623–629. doi: 10.1128/jb.77.5.623-629.1959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. MANDELSTAM J. The intracellular turnover of protein and nucleic acids and its role in biochemical differentiation. Bacteriol Rev. 1960 Sep;24(3):289–308. doi: 10.1128/br.24.3.289-308.1960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. MANDELSTAM J. Turnover of protein in growing and non-growing populations of Escherichia coli. Biochem J. 1958 May;69(1):110–119. doi: 10.1042/bj0690110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. MARKOVITZ A., KLEIN H. P. On the sources of carbon for the induced biosynthesis of alpha-amylase in Pseudomonas saccharophila. J Bacteriol. 1955 Dec;70(6):649–655. doi: 10.1128/jb.70.6.649-655.1955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. MARKOVITZ A., KLEIN R. P. Some aspects of the induced biosynthesis of alpha-amylase of Pseudomonas saccharophila. J Bacteriol. 1955 Dec;70(6):641–648. doi: 10.1128/jb.70.6.641-648.1955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. NEU H. C., HEPPEL L. A. THE RELEASE OF RIBONUCLEASE INTO THE MEDIUM WHEN ESCHERICHIA COLI CELLS ARE CONVERTED TO SPEROPLASTS. J Biol Chem. 1964 Nov;239:3893–3900. [PubMed] [Google Scholar]
  15. NURMIKKO V. Biochemical factors affecting symbiosis among bacteria. Experientia. 1956 Jul 15;12(7):245–249. doi: 10.1007/BF02157327. [DOI] [PubMed] [Google Scholar]
  16. NURMIKKO V. Microbiological determination of vitamins and amino acids produced by microorganisms, using the dialysis cell. Appl Microbiol. 1957 May;5(3):160–165. doi: 10.1128/am.5.3.160-165.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Neu H. C., Heppel L. A. On the surface localization of enzymes in E. coli. Biochem Biophys Res Commun. 1964 Oct 14;17(3):215–219. doi: 10.1016/0006-291x(64)90386-9. [DOI] [PubMed] [Google Scholar]
  18. POLLOCK M. R. The measurement of the liberation of penicillinase from Bacillus subtilis. J Gen Microbiol. 1961 Oct;26:239–253. doi: 10.1099/00221287-26-2-239. [DOI] [PubMed] [Google Scholar]
  19. ROTMAN B., SPIEGELMAN S. On the origin of the carbon in the induced synthesis beta-galactosidase in Escherichia coli. J Bacteriol. 1954 Oct;68(4):419–429. doi: 10.1128/jb.68.4.419-429.1954. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. URBA R. C. Protein breakdown in Bacillus cereus. Biochem J. 1959 Mar;71(3):513–518. doi: 10.1042/bj0710513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. WADE E. H., MATHESON A. T., HANES C. S. Quantitative chromatographic methods. 3. Factors controlling the patterns of separation of the amino acids on paper chromatograms. Can J Biochem Physiol. 1961 Jan;39:141–161. doi: 10.1139/o61-014. [DOI] [PubMed] [Google Scholar]
  22. WEINBAUM G., MALLETTE M. F. Enzyme biosynthesis in Escherichia coli. J Gen Physiol. 1959 Jul 20;42(6):1207–1218. doi: 10.1085/jgp.42.6.1207. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES