Skip to main content
World Journal of Cardiology logoLink to World Journal of Cardiology
. 2011 Jul 26;3(7):230–247. doi: 10.4330/wjc.v3.i7.230

Implications of discoveries from genome-wide association studies in current cardiovascular practice

Panniyammakal Jeemon 1,2,3,4, Kerry Pettigrew 1,2,3,4, Christopher Sainsbury 1,2,3,4, Dorairaj Prabhakaran 1,2,3,4, Sandosh Padmanabhan 1,2,3,4
PMCID: PMC3158871  PMID: 21860704

Abstract

Genome-wide association studies (GWAS) have identified several genetic variants associated with coronary heart disease (CHD), and variations in plasma lipoproteins and blood pressure (BP). Loci corresponding to CDKN2A/CDKN2B/ANRIL, MTHFD1L, CELSR2, PSRC1 and SORT1 genes have been associated with CHD, and TMEM57, DOCK7, CELSR2, APOB, ABCG5, HMGCR, TRIB1, FADS2/S3, LDLR, NCAN and TOMM40-APOE with total cholesterol. Similarly, CELSR2-PSRC1-SORT1, PCSK9, APOB, HMGCR, NCAN-CILP2-PBX4, LDLR, TOMM40-APOE, and APOC1-APOE are associated with variations in low-density lipoprotein cholesterol levels. Altogether, forty, forty three and twenty loci have been associated with high-density lipoprotein cholesterol, triglycerides and BP phenotypes, respectively. Some of these identified loci are common for all the traits, some do not map to functional genes, and some are located in genes that encode for proteins not previously known to be involved in the biological pathway of the trait. GWAS have been successful at identifying new and unexpected genetic loci common to diseases and traits, thus rapidly providing key novel insights into disease biology. Since genotype information is fixed, with minimum biological variability, it is useful in early life risk prediction. However, these variants explain only a small proportion of the observed variance of these traits. Therefore, the utility of genetic determinants in assessing risk at later stages of life has limited immediate clinical impact. The future application of genetic screening will be in identifying risk groups early in life to direct targeted preventive measures.

Keywords: Genome-wide association studies, Cardiovascular disease, Lipids, Blood pressure

INTRODUCTION

Cardiovascular disease (CVD) is the leading cause of morbidity and mortality globally[1,2]. There is a concerted effort to reduce this disease burden, particularly that of coronary heart disease (CHD) and cerebrovascular disease in developed countries[3-5]. These range from primary preventive strategies targeted at risk factors through acute management and secondary prevention strategies[6-8]. Kahn et al[9] estimated that aggressive application of nationally recommended prevention activities for CVD would potentially add approximately 224 million quality adjusted life-years to the US adult population over the next 30 years and improve the average lifespan by at least 1.3 years.

CHD is the result of a combination of genetic and environmental factors. More than 200 risk factors have been associated with CHD and, among these low-density lipoprotein cholesterol (LDL-c) and blood pressure (BP) have been shown through randomized controlled trials to be causally related to CHD. A key factor in reducing the global burden of CVD is early prediction of disease to target preventive interventions. More personalised approaches to CVD prevention are attracting increasing interest. Whilst biomarkers and quantitative traits have been extremely useful in targeting primary prevention, the recent advances in genomics offer a smart option for predicting future risk of disease very early in life using the invariant nature of a genotype throughout an individual’s life-span. For example, Cohen et al[10] demonstrated that a genetic variant resulting in a modest 28% reduction in LDL-c from birth results in an 88% reduction in the risk of CHD. Over the last 5 years, genome-wide association studies (GWAS) have revolutionised the discovery of common genetic variants associated with a range of diseases and traits.

There are three key characteristics of a genetic variant that determine its impact on the phenotype studied - (1) the frequency of the variant; (2) the effect size of the variant on the phenotype; and (3) the number of genetic variants acting on the phenotype. The “common disease common variant” hypothesis (CD:CV) is the model invoked to explain how genes influence common traits such as lipids, coronary artery disease (CAD) and BP[11]. This model proposes, using an evolutionary paradigm, that common disease is due to allelic variants with a frequency greater than 5% in the general population and small individual effect size[12]. The CD:CV framework requires population-wide genotyping of very large numbers of common genetic variants (Single Nucleotide Polymorphisms/SNPs) to determine which variants show significant association with the phenotype studied. Technological advances now allow reliable and high-throughput genotyping of hundreds of thousands of SNPs on a genome-wide scale[13]. Such studies employ large scale association mapping using SNPs, making no assumptions about the genomic location or function of the causal variant, and test the hypothesis that allele frequency differs between individuals with differences in phenotype. In most GWAS, emphasis is given to the “P value” for the association of genotype with disease risk, to reduce the potential for false positive association that arises when the association of hundreds of thousands to millions of markers are tested across the whole genome. The current popular method for multiple-test correction is the frequentist approach of adjusting for a number of independent tests - based on this, a significance level of 5 × 10-8 is commonly used, in populations of European ancestry for an overall genome-wide significance threshold of 0.05, adjusted for an estimated 1 million independent SNPs in the genome by the Bonferroni method[14]. It should be noted that the Bonferroni method is a fairly conservative correction method that may increase false negative rate. Other corrections like the False Discovery Rate or permutation testing can be used to set a different threshold. In this context, it is pertinent to recognise that the P-value is an index of a true positive signal and does not in any way reflect the predictive potential of the associated variant. The current gold standard of validity is multiple replication in independent samples. We review the implications of positive GWAS findings in current cardiovascular practice.

GWAS AND CHD

We summarise the GWAS results of CHD from nine case-control studies and three cohort studies[15-26] (Figure 1 and Table 1). The effect sizes (OR) of susceptibility alleles were modest and ranged from 1.05-2.0. Common variants in chromosome 9p21 were implicated in nine independent case-control studies[16-23,25] and in two cohort studies[15,25]. The most replicated SNPs at chromosome 9p21 were rs0757278 and rs13333049. The loci corresponding to MTHFD1L, initially identified in the Wellcome Trust Case Control Consortium (WTCCC) study[17], were later replicated in the German Family MI study[18] with genome-wide statistical significance. However, it did not reach genome-wide statistical significance in the combined analysis of ten different data sets in the study by Kathiresan et al[21]. Genetic loci corresponding to CELSR2, PSRC1 and SORT1 on chromosome 1p13.3 are identified in three independent studies[18,20,21].

Figure 1.

Figure 1

Significant genome-wide association study findings in coronary heart disease. CELSR2: Cadherin EGF LAG seven-pass G-type receptor 2; PSRC1: Proline/serine-rich coiled-coil 1; SORT1: Sortilin 1; PCSK9: Proprotein convertase subtilisin/kexin type 9; MRAS: Ras-related protein M-Ras; MTHFD1L: Methylenetetrahydrofolate dehydrogenase (NADP+ dependent) 1-like; SLC22A3: Solute carrier family 22 (extraneuronal monoamine transporter), member 3; LPAL2: Lipoprotein, Lp(a)-like 2 pseudogene; LPA: Lipoprotein Lp(a); CDKN2A: Cyclin-dependent kinase inhibitor 2A; CDKN2B: Cyclin-dependent kinase inhibitor 2B; MTAP: Methylthioadenosine phosphorylase; CXCL12: Chemokine (C-X-C motif) ligand 12.

Table 1.

Single Nucleotide Polymorphisms associated with coronary heart disease in genome-wide association studies

Chromosome SNP Position Sample size MAF (%) OR (95% CI) Pvalue Proximal gene Ref.
1 rs646776 109 620 053 9746/9746 81.0 1.17 (1.11-1.24) CELSR2 [18,20,21]
rs599839 109 623 689 2801/4582 - 1.29 (1.18-1.40) 4.05 × 10-9 PSRC1
rs599839 109 623 689 1926/2938 80.8 1.20 (1.10-1.31) 1.30 × 10-5 SORT1
1 rs11206510 55 268 627 25 5381 81.0 1.15 (1.10-1.21) PCSK9 [21]
1 rs17465637 220 890 152 9746/9746 72.0 1.13 (1.08-1.18) MIA3 [18,21]
2801/4582 - 1.20 (1.12-1.30) 1.27 × 10-6
2 rs6725887 203 454 130 9746/9746 14.0 1.17 (1.11-1.23) WDR12 [21]
2 rs2943634 226 776 324 2801/4582 37/32 1.21 (1.03-1.30) 1.60 × 10-7 Intergenic [18]
3 rs9818870 139 604 812 19 407/21 366 17.3/15.4 1.15 (1.11-1.19)  7.44 × 10-13 MRAS [23]
6 rs12526453 13 035 530 25 5381 65.0 1.12 (1.08-1.17) PHACTR1 [21]
6 rs6922269 151 294 678 2801/4582 30.0/26.0 1.23 (1.15-1.33) 2.90 × 10-8 MTHFD1L [18]
rs6922269 151 294 678 1926/2938 29.4/25.3 1.17 (1.04-1.32) 1.50 × 10-5
62 rs2048327 160 783 522 4976/4383 4.1/2.1 1.82 (1.57-2.12)  4.20 × 10-15 SLC22A3 [22]
rs3127599 160 827 124 LPAL2
rs7767084 160 882 493 LPA
rs10755578 160 889 728
9 rs10757278 22 114 477 1607/6728 51.7/45.3 1.28 (1.22-1.35)  3.60 × 10-14 CDKN2A [15,16,18,19,21,22,23,25]
rs10757274 22 086 055 - 25.3/20.4 1.33 (1.23-1.47) CDKN2B
rs1333049 22 115 503 875/1644 54.0/48.0 1.33 (1.18-1.51) 3.40 × 10-6
rs1333049 22 115 503 1926/2938 55.4/47.4 1.47 (1.27-1.70)  1.16 × 10-13 MTAP
rs1333049 22 115 503 12 004/28 949 - 1.24 (1.20-1.28)
- 9746/9746 56.0 1.28 (1.23-1.33)
rs4977574 22 088 574 - - -
- 19 407/21 366 - -
- 33 282 - 1.20 (1.08-1.34)3
rs1333049 22 115 503
10 rs1746048 44 095 830 9746/9746 84.0 1.14 (1.08-1.21) CXCL12 [18,21]
rs501120 44 073 873 2801/4582 -/- 1.33 (1.20-1.48) 9.46 × 10-8
12 rs2259816 119 919 970 19 407/21 366 37.4/35.8 1.08 (1.05-1.11) HNF1A-C12 or f43 [23]
16 rs4329913 55 462 933 18 245 - 1.29 (1.02-1.63)3 CETP [26]
rs7202364 55 342 891 0.76 (0.59-0.99)3
19 rs1122608 11 024 601 25 5381 75.0 1.15 (1.10-1.20) LDLR [20,21]
rs6511720 11 063 306 1926/2938 90.2 1.29 (1.10-1.52) 6.70 × 10-4
19 rs4420638 50 114 786 1926/2938 20.9 1.17 (1.08-1.28) 1.00 × 10-4 APOE/C1/C4 [20,21]
rs4420638 50 114 786 14 365/30 576
21 rs9982601 34 520 998 25 5381 13.0 1.28 (1.23-1.33) MRPS6 [21]
SLC5A3
KCNE2

1WTCC and GerMIFS I and GerMIFS II were added to the total sample; 2Haplotype CCTC; 3Hazard ratio per allele after adjustment for age and multiple risk factors. CELSR2: Cadherin EGF LAG seven-pass G-type receptor 2; PSRC1: Proline/serine-rich coiled-coil 1; SORT1: Sortilin 1; PCSK9: Proprotein convertase subtilisin/kexin type 9; MIA3: Melanoma inhibitory activity family member 3; WDR12: WD repeat protein 12; MRAS: Ras-related protein M-Ras; PHACTR1: Phosphatase and actin regulator 1; MTHFD1L: Methylenetetrahydrofolate dehydrogenase (NADP+ dependent) 1-like; SLC22A3: Solute carrier family 22 (extraneuronal monoamine transporter), member 3; LPAL2: Lipoprotein; Lp(a)-like 2 pseudogene; LPA: Lipoprotein Lp(a); CDKN2A: Cyclin-dependent kinase inhibitor 2A; CDKN2B: Cyclin-dependent kinase inhibitor 2B; MTAP: Methylthioadenosine phosphorylase; CXCL12: Chemokine (C-X-C motif) ligand 12; HNF1A-C12: Hepatocyte nuclear factor-1 homeobox A; CETP: Cholesteryl ester transfer protein plasma; LDLR: Low density lipoprotein receptor; APOE/C1/C4: Apolipoprotein; MRPS6: Mitochondrial ribosomal protein S6; SLC5A3: Solute carrier family 5 (sodium/myo-inositol cotransporter) member 3; KCNE2: Potassium voltage-gated channel subfamily E member 2; SNP: Single nucleotide polymorphisms; MAF: Minor allele frequency; OR: Odds ratio.

GWAS AND LIPIDS

Aulchenko et al[27] studied total cholesterol (TC)-associated genetic markers and identified 11 loci significantly associated with the trait (Figure 2 and Table 2): these corresponded to TMEM57, DOCK7, CELSR2, APOB, ABCG5, HMGCR, TRIB1, FADS2/S3, LDLR, NCAN and TOMM40-APOE. Many of these genes are also implicated in other lipid traits. After screening the genome for common variants associated with plasma lipids in > 100 000 individuals of European ancestry, Teslovich et al[28] identified 39 novel loci associated with TC and replicated several other loci found to be associated with lipid traits in the previous GWAS.

Figure 2.

Figure 2

Significant genome-wide association study findings in total cholesterol. TMEM57: Transmembrane protein 57; DOCK7: Dedicator of cytokinesis 7; CELSR2: Cadherin, EGF LAG seven-pass G-type receptor 2; LDLRAP1: Low-density lipoprotein receptor adaptor protein 1; EVI5: Ecotropic viral integration site 5; IRF2BP2: Interferon regulatory factor 2 binding protein 2; APOB: Apolipoprotein B; ABCG5: ATP-binding cassette sub-family G member 5; RAB3GAP1: RAB3 GTPase activating protein subunit 1 (catalytic); RAF1: V-raf-1 murine leukemia viral oncogene homolog 1; HMGCR: 3-hydroxy-3-methylglutaryl-CoA reductase; TIMD4: T-cell immunoglobulin and mucin domain containing 4; HLA: Human leukocyte antigen (HLA) complex; C6orf106: Chromosome 6 open reading frame 106; FRK: Fyn-related kinase; DNAH11: Dynein, axonemal, heavy chain 11; NPC1L1: NPC1 (Niemann-Pick disease; type C1, gene)-like 1; TRIB1: Tribbles Homolog-1 (Trib1); CYP7A1: Cytochrome P450, family 7, subfamily A, polypeptide 1; TRPS1: Trichorhinophalangeal syndrome 1; GPAM: Glycerol-3-phosphate acyltransferase, mitochondrial; FADS: Fatty acid desaturase; SPTY2D1: Suppressor of Ty, domain containing 1 (S. cerevisiae); UBASH3B: Ubiquitin associated and SH3 domain containing B; BRAP: BRCA1 associated protein; HNF1A: Hepatocyte nuclear factor-1 α; HPR: Haptoglobin-related protein; LDLR: Low-density lipoprotein receptor; NCAN: Neurocan; TOMM40: Translocase of outer mitochondrial membrane 40 homolog; CILP2: Cartilage intermediate layer protein 2; ERGIC3: Endoplasmic reticulum-Golgi intermediate compartment protein 3; MAFB: V-maf musculoaponeurotic fibrosarcoma oncogene homolog B.

Table 2.

Single nucleotide polymorphisms associated with total cholesterol identified through genome-wide association studies

Chromosome Strongest SNP Chromosome position Sample size MAF (average) β Pvalue Proximal gene Ref.
1 rs10903129 25 641 524 22 550 54 0.061 5.4 × 10-10 TMEM57 [27]
1 rs1167998 62 704 220 17 346 32 -0.073 6.4 × 10-10 DOCK7 [27]
rs108889353 19 099 32 -0.079 3.7 × 10-12 [27]
1 rs646776 109 620 053 17 441 22 -0.128 8.5 × 10-22 CELSR2 [27]
1 rs12027135 25 648 320 > 100 000 45 -1.22 4.0 × 10-11 LDLRAP1 [28]
1 rs7515577 92 782 026 > 100 000 21 -1.18 3.0 × 10-8 EVI5 [28]
1 rs2642442 219 040 186 > 100 000 48 -1.36 5.0 × 10-14 IRF2BP2 [28]
2 rs693 21 085 700 22 500 52 -0.096 8.7 × 10-23 APOB [27]
2 rs6756629 43 918 594 17 472 92 0.145 1.5 × 10-11 ABCG5 [27]
2 rs7570971 135 554 376 > 100 000 34 1.25 2.0 × 10-8 RAB3GAP1 [28]
3 rs2290159 12 603 920 > 100 000 22 -1.42 4.0 × 10-9 RAF1 [28]
5 rs384662 35 421 429 20 873 44 0.092 2.5 × 10-19 HMGCR [27]
rs12916 74 692 295 > 100 000 39 2.84 9.0 × 10-47 [28]
5 rs6882076 156 322 875 > 100 000 35 -1.98 7.0 × 10-28 TIMD4 [28]
6 rs3177928 32 520 413 > 100 000 16 2.31 4.0 × 10-19 HLA [28]
6 rs2814982 34 654 538 > 100 000 11 -1.86 5.0 × 10-11 C6orf106 [28]
6 rs9488822 116 419 586 > 100 000 35 -1.18 2.0 × 10-10 FRK [28]
7 rs12670798 21 573 877 > 100 000 23 1.43 9.0 × 10-10 DNAH11 [28]
7 rs2072183 44 545 705 > 100 000 25 2.01 3.0 × 10-11 NPC1L1 [28]
8 rs6987702 126 573 908 17 413 29 0.073 3.3 × 10-9 TRIB1 [27]
8 rs2081687 59 551 119 > 100 000 35 1.23 2.0 × 10-12 CYP7A1 [28]
8 rs2737229 116 717 740 > 100 000 30 -1.11 2.0 × 10-8 TRPS1 [28]
10 rs2255141 113 923 876 > 100 000 30 1.14 2.0 × 10-10 GPAM [28]
11 rs174570 61 353 788 20 916 83 0.088 1.5 × 10-10 FADS2/3 [27]
11 rs10128711 18 589 560 > 100 000 28 -1.04 3.0 × 10-8 SPTY2D1 [28]
11 rs7941030 122 027 585 > 100 000 38 0.97 2.0 × 10-10 UBASH3B [28]
12 rs11065987 110 556 807 > 100 000 42 -0.96 7.0 × 10-12 BRAP [28]
12 rs1169288 119 901 033 > 100 000 33 1.42 1.0 × 10-14 HNF1A [28]
16 rs2000999 70 665 594 > 100 000 20 2.34 3.0 × 10-24 HPR [28]
19 rs2228671 11 071 912 20 910 88 0.158 9.3 × 10-24 LDLR [27]
19 rs2304130 19 650 528 20 914 7 -0.153 2.0 × 10-15 NCAN [27]
19 rs2075650 50 087 459 17 463 15 0.138 2.9 × 10-19 TOMM40-APOE [27]
rs157580 50 087 106 20 903 33 -0.09 5.1 × 10-17 [27]
19 rs10401969 19 268 718 > 100 000 7 -4.74 3.0 × 10-38 CILP2 [28]
19 rs492602 53 898 229 > 100 000 49 1.27 2.0 × 10-10 FLJ36070 [28]
20 rs2277862 > 100 000 15 -1.19 4.0 × 10-10 ERGIC3 [28]
20 rs2902940 38 524 901 > 100 000 29 -1.38 6.0 × 10-11 MAFB [28]

TMEM57: Transmembrane protein 57; DOCK7: Dedicator of cytokinesis 7; CELSR2: Cadherin, EGF LAG seven-pass G-type receptor 2; LDLRAP1: Low density lipoprotein receptor adaptor protein 1; EVI5: Ecotropic viral integration site 5; IRF2BP2: Interferon regulatory factor 2 binding protein 2; APOB: Apolipoprotein B; ABCG5: ATP-binding cassette sub-family G member 5; RAB3GAP1: RAB3 GTPase activating protein subunit 1 (catalytic); RAF1: v-raf-1 murine leukemia viral oncogene homolog 1; HMGCR: 3-hydroxy-3-methylglutaryl-CoA reductase; TIMD4: T-cell immunoglobulin and mucin domain containing 4; HLA: Human leukocyte antigen (HLA) complex; C6orf106: Chromosome 6 open reading frame 106; FRK: Fyn-related kinase; DNAH11: Dynein, axonemal, heavy chain 11; NPC1L1: NPC1 (Niemann-Pick disease, type C1, gene)-like 1; TRIB1: Tribbles Homolog-1 (Trib1); CYP7A1: Cytochrome P450, family 7, subfamily A, polypeptide 1; TRPS1: Trichorhinophalangeal syndrome 1; GPAM: Glycerol-3-phosphate acyltransferase; mitochondrial; FADS: Fatty acid desaturase; SPTY2D1: Suppressor of Ty, domain containing 1 (S. cerevisiae); UBASH3B: Ubiquitin associated and SH3 domain containing B; BRAP: BRCA1 associated protein; HNF1A: Hepatocyte nuclear factor-1 α; HPR: Haptoglobin-related protein; LDLR: Low density lipoprotein receptor; NCAN: Neurocan; TOMM40: Translocase of outer mitochondrial membrane 40 homolog; CILP2: Cartilage intermediate layer protein 2; ERGIC3: Endoplasmic reticulum-Golgi intermediate compartment protein 3; MAFB: V-maf musculoaponeurotic fibrosarcoma oncogene homolog B; SNP: Single nucleotide polymorphisms; MAF: Minor allele frequency.

Prior to the publication of the meta-analysis of blood lipids conducted by Teslovich et al[28], 29 loci had been found to be associated with variation in high-density lipoprotein cholesterol (HDL-c) levels[20,27-39]. Teslovich et al[28] identified 31 novel loci associated with HDL-c with genome-wide significance. The most commonly-replicated loci are LPL, LIPC, CETP, ABCA1, LIPG, APOA1/C3/A4/A5 and GALNT2 (Figure 3 and Table 3). The LIPC locus has a set of common variants nearly 50 kb upstream of the gene, strongly associated with HDL-c and appearing to be independent of previously described variants that overlap the transcribed sequence of the gene. SNPs close to the mevalonate kinase-methylmalonic aciduria cblB type (MMAB) locus were found to be associated with HDL-c initially by Willer et al[20] and later confirmed by Kathiresan et al[29].

Figure 3.

Figure 3

Significant genome-wide association study findings in high-density lipoprotein cholesterol. GALNT2: N-acetylgalactosaminyltransferase 2; PABPC4: Poly(A) binding protein; cytoplasmic 4 (inducible form); ZNF648: Zinc finger protein 648; GCKR: Glucokinase (hexokinase 4) regulator; APOB: Apolipoprotein B; IRS1: Insulin receptor substrate 1; COBLL1: COBL-like 1; GRB14: Growth factor receptor-bound protein 14; SLC39A8: Solute carrier family 39 (zinc transporter) member 8; ARL15: ADP-ribosylation factor-like 15; C6orf106: Chromosome 6 open reading frame 106; CITED2: Cbp/p300-interacting transactivator, with Glu/Asp-rich carboxy-terminal domain 2; LPA: Lipoprotein, Lp(a); KLF14: Kruppel-like factor 14; LPL: Lipoprotein lipase; SLC18A1: Solute carrier family 18 (vesicular monoamine) member 1; PPP1R3B: Protein phosphatase 1, regulatory (inhibitor) subunit 3B; TRPS1: Trichorhinophalangeal syndrome 1; GRIN3A: Glutamate receptor, ionotropic, N-methyl-D-aspartate 3A; ABCA1: ATP-binding cassette; sub-family A (ABC1) member 1; TTC39B: Tetratricopeptide repeat domain 39B; ABCA1: ATP-binding cassette, sub-family A (ABC1) member 1; APOA1: Apolipoprotein A-I; AMPD3: Adenosine monophosphate deaminase 3; LRP4: Low-density lipoprotein receptor-related protein 4; MADD-FOLH1: MAP-kinase activating death domain- folate hydrolase (prostate-specific membrane antigen) 1; FADS1-S3: Fatty acid desaturase 1; BUD13: BUD13 homolog; ZNF259: Zinc finger protein 259; MVK: Mevalonate kinase; MMAB: Methylmalonic aciduria (cobalamin deficiency) cblB type; PDE3A: Phosphodiesterase 3A; SBNO1: Strawberry notch homolog 1; ZNF664: Zinc finger protein 664; SCARB1: Scavenger receptor class B member 1; ASCL1: Achaete-scute complex homolog 1; PAH: Phenylalanine hydroxylase; LIPC: Hepatic lipase; LACTB: Lactamase β; CETP: Cholesteryl ester transfer protein plasma; LCAT: Lecithin-cholesterol acyltransferase; CTCF: CCCTC-binding factor (zinc finger protein); PRMT8: Protein arginine methyltransferase 8; NLRC5: NLR family CARD domain containing 5; STARD3: StAR-related lipid transfer (START) domain containing 3; ABCA8: ATP-binding cassette; sub-family A (ABC1) member 8; PGS1: Phosphatidylglycerophosphate synthase 1; LIPG: Lipase endothelial; MC4R: Melanocortin 4 receptor; APOC1: Apolipoprotein C-I; APOE: Apolipoprotien E; ANGPTL3: Angiopoietin-like 3; LILRA3: Leukocyte immunoglobulin-like receptor, subfamily A (without TM domain) member 3; PLTP: Phospholipid transfer protein; HNF4A: Hepatocyte nuclear factor 4 α; PLTP: Phospholipid transfer protein; UBE2L3: Ubiquitin-conjugating enzyme E2L 3.

Table 3.

Single nucleotide polymorphisms associated with high-density lipoprotein cholesterol identified through genome-wide association studie

Chromosome Strongest SNP Chromosome position Sample size MAF (average) Change in HDLc/β Pvalue Proximal gene Ref.
1 rs2144300 228 361 539 8656 40 -  6.6 × 10-7 GALNT2 [20]
rs4846914 228 362 314 19 794 40 -0.05 SD  4.0 × 10-8 [30]
1 rs4660293 39 800 767 > 100 000 23 -0.48  4.0 × 10-10 PABPC4 [28]
1 rs1689800 180 435 508 > 100 000 35 -0.47  3.0 × 10-10 ZNF648 [28]
2 rs1260326 27 584 444 16 682 41 0.93% < 5 × 10-8 GCKR [31]
2 rs6754295 21 059 688 17 915 25 2.63 (z-sc)1  4.4 × 10-8 APOB [27]
2 rs2972146 226 808 942 > 100 000 37 0.46  3.0 × 10-9 IRS1 [28]
2 rs10490964 51 926 908 18 245 12 1.35 mg/dL  3.9 × 10-9 COBLL1, GRB14 [26]
rs12328675 165 249 046 > 100 000 13 0.68  3.0 × 10-10 COBLL1 [28]
4 rs13107325 103 407 732 > 100 000 7 -0.84  7.0 × 10-11 SLC39A8 [28]
5 rs6450176 53 333 782 > 100 000 26 -0.49  5.0 × 10-8 ARL15 [28]
6 rs2814944 34 660 775 > 100 000 16 -0.49  4.0 × 10-9 C6orf106 [28]
6 rs605066 139 871 359 > 100 000 42 -0.39  3.0 × 10-8 CITED2 [28]
6 rs1084651 161 009 807 > 100 000 16 1.95  3.0 × 10-8 LPA [28]
7 rs4731702 130 083 924 > 100 000 48 0.59  1.0 × 10-15 KLF14 [28]
8 rs2083637 19 909 455 17 922 26 4.14 (z-sc)1  5.5 × 10-18 LPL [27]
rs10503669 19 891 970 8656 10  3.2 × 10-10 [20]
rs331 19 864 685 6382 28 1.5 mg/dL  9.1 × 10-7 [32]
rs17482753 19 876 926 8180 -  2.8 × 10-11 [33]
rs326 19 863 719 10 536 22-30  1.8 × 10-8 [35]
rs331 19 864 685 6382 28 1.5 mg/dL  9.1 × 10-7 [32]
rs12678919 19 888 502 19 794 10 0.23 SD  2.0 × 10-34 [30]
rs301 19 861 214 5592 25 0.04  9.3 × 10-11 [36]
8 rs3916027 19 869 148 5592 27 0.04  5.4 × 10-10 SLC18A1 [36]
8 rs331 19 864 685 16 809 27 0.43% < 5 × 10-8 Intergenic, PPP1R3B, LPL [31]
rs9987289 9 220 768 > 100 000 9 -1.21  6.0 × 10-25 PPP1R3B [25]
8 rs2293889 116 668 374 > 100 000 0.41 -0.44  6.0 × 10-11 TRPS1 [28]
9 r1323432 103 402 758 8656 12 1.93 mg/dL  2.5 × 10-8 GRIN3A [20]
9 rs3905000 106 696 891 17 913 14 -4.37 (z-sc)1  8.6 × 10-13 ABCA1 [27]
rs4149268 106 687 041 8656 36  3.3 × 10-7 [20]
rs3890182 106 687 476 21 312 -  3.0 × 10-10 [29]
rs9282541 106 660 656 10 536 0-9  4.8 × 10-8 [35]
rs2515614 106 724 139 16 798 34 0.20% < 5 × 10-8 [31]
rs1883025 106 704 122 19 371 26 -0.08 SD  1.0 × 10-9 [30]
9 rs471364 15 279 578 40 414 12 -0.08 SD  3.0 × 10-10 TTC39B [29]
rs581080 15 295 378 > 100 000 18 -0.65  3.0 × 10-12 [28]
9 rs1883025 106 704 122 > 100 000 25 -0.94  2.0 × 10-33 ABCA1 [28]
11 rs12225230 116 233 840 6382 18 1.5 mg/dL  5.3 × 10-5 APOA1/C3/A4/A5 [32]
rs618923 116 159 369 12 111 25 0.30% < 5 × 10-8 [31]
rs964184 116 154 127 19 794 14 -0.17 SD  1.0 × 10-12 [30
rs7350481 116 091 493 8993 28 0.62%  8.8 × 10-10 [36]
rs7350481 116 091 493 18 245  2.8 × 10-12 [26]
11 rs2923084 10 345 358 > 100 000 17 -0.41  5.0 × 10-8 AMPD3 [28]
11 rs3136441 46 699 823 > 100 000 15 0.78  3.0 × 10-18 LRP4 [28]
11 rs7395662 17 917 39 2.82 (z-sc)1  6.0 × 10-11 MADD-FOLH1 [27]
11 rs174547 61 327 359 40 330 33 -0.09 SD  2.0 × 10-12 FADS1-S3 [30]
11 rs6589565 116 145 447 5592 -0.05  4.4 × 10-7 BUD13 [36]
11 rs2075290 116 158 506 5592 7 -0.05  4.2 × 10-7 ZNF259 [36]
12 rs2338104 108 379 551 8656 45  1.9 × 10-6 MVK/MMAB [20]
rs2338104 108 379 551 19 793 45 -0.07 SD  1.0 × 10-10 [30]
rs7134594 108 484 574 > 100 000 47 -0.44  7.0 × 10-15 [28]
12 rs7134375 20 365 025 > 100 000 42 0.40  4.0 × 10-8 PDE3A [28]
12 rs4759375 122 362 191 > 100 000 6 0.86  7.0 × 10-9 SBNO1 [28]
12 rs4765127 123 026 120 > 100 000 34 0.44  3.0 × 10-10 ZNF664 [28]
12 rs838880 123 827 546 > 100 000 31 0.61  3.0 × 10-14 SCARB1 [28]
12 rs1818702 102 047 685 16 844 29 0.22% < 5 × 10-8 Intergenic, ASCL1, PAH [31]
15 rs1532085 56 470 658 19 736 41 5.03 (z-sc)1  9.7 × 10-36 LIPC [27]
rs4115041 121 186 681 8656 33  2.8 × 10-9 [20]
rs1532085 56 470 658 6382 37 1.8 mg/dL  1.3 × 10-10 [32]
rs1800588 56 510 967 21 312 -  2.0 × 10-32 [29]
rs11858164 56 530 023 10 536 27-55  7.0 × 10-8 [35]
rs1532085 56 470 658 6382 37 1.8 mg/dL  1.3 × 10-10 [32]
rs1800588 56 510 967 16 811 22 0.60% < 5 × 10-8 [31]
rs10468017 56 465 804 19 794 30 0.10 SD  8.0 × 10-23 [30]
rs1077834 56 510 771 5987 49 1.00%  1.3 × 10-14 [36]
rs1077834 56 510 771 18 245  1.4 × 10-23 [26]
rs261342 56 518 445 5592 22 0.03  6.3 × 10-8 [36]
rs1532085 56 470 658 > 100 000 39 1.45  3.0 × 10-96 [28]
15 rs2652834 61 183 920 > 100 000 20 -0.39  9.0 × 10-9 LACTB [28]
16 rs1800775 55 552 737 2623 47  2.5 × 10-13 CETP [28]
rs1532624 55 562 980 19 674 43 8.24 (z-sc)1  9.4 × 10-94 [27]
rs3764261 55 550 825 8656 31 2.42 mg/dL  2.8 × 10-19 [20]
rs3764261 55 550 825 6382 31 4.0 mg/dL  1.0 × 10-41 [32]
rs1800775 55 552 737 2758 49 2.6 mg/dL  3.0 × 10-13 [29]
rs1800775 55 552 737 1643 47 3.99 mg/dL  6.1 × 10-15 [33]
rs9989419 55 542 640 8216 -  8.5 × 10-27 [33]
rs7205804 55 562 390 10 536 37-50  4.7 × 10-47 [36]
rs3764261 55 550 825 6382 31 4.0 mg/dL  1.0 × 10-41 [32]
rs1800775 55 552 737 16 779 49 2.50% < 5 × 10-8 [31]
rs3764261 55 550 825 322 - 6.2 mg/dL  3.4 × 10-12 [39]
rs3764261 55 550 825 18 245  3.7 × 10-93 [26]
rs173539 55 545 545 19 794 32 0.25 SD  4.0 × 10-75 [30]
rs3764261 55 550 825 5987 21 2.11%  4.8 × 10-29 [37]
rs3764261 55 550 825 18 245 30-48  3.7 × 10-93 [27]
rs17231506 55 552 029 5592 32 0.07  2.3 × 10-36 [36]
rs3764261 55 550 825 > 100 000 32 3.39   7.0 × 10-380 [28]
16 rs255052 66 582 496 8656 17  1.5 × 10-6 LCAT [20]
rs255052 66 582 496 8656 + 4534 -  1.2 × 10-7 [20]
rs2271293 66 459 571 31 946 11 0.07 SD  9.0 × 10-13 [30]
rs16942887 66 485 543 > 100 000 12 1.27  8.0 × 10-33 [28]
16 rs2271293 66 459 571 17 910 13 4.99 (z-sc)1  8.3 × 10-16 CTCF-PRMT8 [27]
16 rs289743 55 575 29 5592 31 0.03  8.6 × 10-9 NLRC5 [36]
16 rs2925979 80 092 291 > 100 000 30 -0.45  2.0 × 10-11 CMIP [28]
17 rs11869286 35 067 382 > 100 000 34 -0.48  1.0 × 10-13 STARD3 [28]
17 rs4148008 64 386 889 > 100 000 32 -0.42  2.0 × 10-10 ABCA8 [28]
17 rs4129767 73 915 579 > 100 000 49 -0.39  8.0 × 10-9 PGS1 [28]
18 rs4939883 45 421 212 16 258 17 -3.98 (z-sc)1  1.6 × 10-11 LIPG [27]
rs2156552 45 435 666 8656 16  8.4 × 10-7 [20]
rs2156552 45 435 666 21 312 -  2.0 × 10-7 [29]
rs4939883 45 421 212 16 648 16 0.22% < 5 × 10-8 [31]
rs4939883 45 421 212 19 785 17 -0.14 SD  7.0 × 10-15 [30]
rs4939883 45 421 212 18 245  1.4 × 10-9 [26]
rs7241918 45 414 951 > 100 000 17 -1.31  3.0 × 10-49 [28]
18 rs12967135 56 000 003 > 100 000 23 -0.42  7.0 × 10-9 MC4R [28]
19 rs769449 50 101 842 16 728 12 0.30% < 5 × 10-8 APOC1-APOE [31]
18 245  2.6 × 10-11 [26]
19 rs2967605 8 375 738 35 151 16 -0.12 SD  1.0 × 10-8 ANGPTL3 [30]
rs7255436 8 339 196 > 100 000 47 -0.45  3.0 × 10-8 [28]
19 rs737337 11 208 493 > 100 000 8 -0.64  3.0 × 10-9 LOC55908 [28]
19 rs386000 59 484 573 > 100 000 20 0.83  4.0 × 10-16 LILRA3 [28]
20 rs6065906 43 987 422 16 810 48 0.40% < 5 × 10-8 PLTP [31]
18 245  1.9 × 10-14 [26]
20 rs1800961 42 475 778 30 714 3 -0.19 SD  8.0 × 10-10 HNF4A [30]
rs1800961 42 475 778 > 100 000 3 -1.88  1.0 × 10-15 [28]
20 rs7679 44 009 909 40 248 19 -0.07 SD  4.0 × 10-9 PLTP [30]
rs6065906 43 987 422 > 100 000 18 -0.93  2.0 × 10-22 [28]
22 rs181362 20 262 068 > 100 000 20 -0.46  1.0 × 10-8 UBE2L3 [28]

1z-sc: the ENGAGE consortium provided the effect size on the z-scale. GALNT2: N-acetylgalactosaminyltransferase 2; PABPC4: Poly(A) binding protein, cytoplasmic 4 (inducible form); ZNF648: Zinc finger protein 648; GCKR: Glucokinase (hexokinase 4) regulator; APOB: Apolipoprotein B; IRS1: Insulin receptor substrate 1; COBLL1: COBL-like 1; GRB14: Growth factor receptor-bound protein 14; SLC39A8: Solute carrier family 39 (zinc transporter) member 8; ARL15: ADP-ribosylation factor-like 15; C6orf106: Chromosome 6 open reading frame 106; CITED2: Cbp/p300-interacting transactivator, with Glu/Asp-rich carboxy-terminal domain 2; LPA: Lipoprotein, Lp(a); KLF14: Kruppel-like factor 14; LPL: Lipoprotein lipase; SLC18A1: Solute carrier family 18 (vesicular monoamine) member 1; PPP1R3B: Protein phosphatase 1, regulatory (inhibitor) subunit 3B; TRPS1: Trichorhinophalangeal syndrome 1; GRIN3A: Glutamate receptor, ionotropic, N-methyl-D-aspartate 3A; ABCA1: ATP-binding cassette, sub-family A (ABC1) member 1; TTC39B: Tetratricopeptide repeat domain 39B; ABCA1: ATP-binding cassette, sub-family A (ABC1) member 1; APOA1: Apolipoprotein A-I; AMPD3: Adenosine monophosphate deaminase 3; LRP4: Low density lipoprotein receptor-related protein 4; MADD-FOLH1: MAP-kinase activating death domain- folate hydrolase (prostate-specific membrane antigen) 1; FADS1-S3: Fatty acid desaturase 1; BUD13: BUD13 homolog; ZNF259: Zinc finger protein 259; MVK: Mevalonate kinase; MMAB: Methylmalonic aciduria (cobalamin deficiency) cblB type; PDE3A: Phosphodiesterase 3A; SBNO1: Strawberry notch homolog 1; ZNF664: Zinc finger protein 664; SCARB1: Scavenger receptor class B member 1; ASCL1: Achaete-scute complex homolog 1; PAH: Phenylalanine hydroxylase; LIPC: Hepatic lipase; LACTB: Lactamase β; CETP: Cholesteryl ester transfer protein plasma; LCAT: Lecithin-cholesterol acyltransferase; CTCF: CCCTC-binding factor (zinc finger protein); PRMT8: Protein arginine methyltransferase 8; NLRC5: NLR family CARD domain containing 5; STARD3: StAR-related lipid transfer (START) domain containing 3; ABCA8: ATP-binding cassette; sub-family A (ABC1) member 8; PGS1: Phosphatidylglycerophosphate synthase 1; LIPG: Lipase endothelial; MC4R: Melanocortin 4 receptor; APOC1: Apolipoprotein C-I; APOE: Apolipoprotien E; ANGPTL3: Angiopoietin-like 3; LILRA3: Leukocyte immunoglobulin-like receptor, subfamily A (without TM domain) member 3; PLTP: Phospholipid transfer protein; HNF4A: Hepatocyte nuclear factor 4 α; PLTP: Phospholipid transfer protein; UBE2L3: Ubiquitin-conjugating enzyme E2L 3; SNP: Single nucleotide polymorphisms; MAF: Minor allele frequency. HDLc: high-density lipoprotein cholesterol.

GWAS have identified several genetic loci associated with LDL-c (Figure 4 and Table 4)[20,27-32,34,36,40], such as the study by Teslovich et al[28] which identified 22 novel and 25 previously implicated loci. CELSR2-PSRC1-SORT1 and PCSK9 loci on chromosome 1, APOB, HMGCR, NCAN-CILP2-PBX4, LDLR, TOMM40-APOE, and APOC1-APOE were the most commonly-replicated loci in LDL-c. Several of these loci were also associated with CHD in the WTCCC study[17].

Figure 4.

Figure 4

Significant genome-wide association study findings in low-density lipoprotein cholesterol. CELSR2: Cadherin EGF LAG seven-pass G-type receptor 2; PSRC1: Proline/serine-rich coiled-coil 1; SORT1: Sortilin 1; PCSK9: Proprotein convertase subtilisin/kexin type 9; APOB: Apolipoprotein B; ABCG: ATP-binding cassette sub-family G; GCKR: Glucokinase (hexokinase 4) regulator; TIMD4: T-cell immunoglobulin and mucin domain containing 4; HAVCR1: Hepatitis A virus cellular receptor 1; HMGCR: 3-hydroxy-3-methylglutaryl-CoA reductase; MYLIP: Myosin regulatory light chain interacting protein; HFE: Human hemochromatosis; LPA: Lipoprotein, Lp(a); DNAH11: Dynein axonemal heavy chain 11; KLF14: Kruppel-like factor 14; TRIB1: Tribbles homolog 1; PLEC1: Plectin; ABO: ABO blood group (transferase A, α 1-3-N-acetylgalactosaminyltransferase, transferase B, α 1-3-galactosyltransferase); FADS: Fatty acid desaturase; APOA1: Apolipoprotien A1; ST3GAL4: ST3 β-galactoside α-2;3-sialyltransferase 4; CCDC92: Coiled-coil domain containing 92; DNAH10: Dynein axonemal heavy chain 10; ZNF664: Zinc finger protein 664; HNF1A: HNF1 homeobox A; NYNRIN: NYN domain and retroviral integrase containing; CETP: Cholesteryl ester transfer protein plasma; OSBPL7: Oxysterol binding protein-like 7; NCAN: Nucleoporin 214kDa; CILP2: Cartilage intermediate layer protein 2; PBX4: Pre-B-cell leukemia homeobox 4; LDLR: Low-density lipoprotein receptor; TOMM40: Translocase of outer mitochondrial membrane 40 homolog; APOE: Apolipoprotien E; APOC2: Apolipoprotein C-II; APOE: Apolipoprotien E; BCAM: Basal cell adhesion molecule; BCL3: B-cell CLL/lymphoma 3; PVRL2: Poliovirus receptor-related 2 (herpesvirus entry mediator B); PLPT: Proteolipid protein; MAFB: V-maf musculoaponeurotic fibrosarcoma oncogene homolog B; TOP1: Topoisomerase (DNA) 1.

Table 4.

Single nucleotide polymorphisms associated with low-density lipoprotein cholesterol identified through genome-wide association studies

Chromosome Strongest SNP Chromosome position Sample size MAF (average) β Pvalue Proximal gene Ref.
1 rs1167998 62 704 220 12 685 22 -0.155  7.8 × 10-23 PSRC1, CELSR2, SORT1 [27]
rs646776 109 620 053 6382 22 -  4.9 × 10-19 [32]
rs599839 109 623 689 1636 24 - 1.1 × 10-7 [34]
rs602633 109 623 034 8589 20 -  4.8 × 10-14 [20]
rs646776 109 620 053 16 791 22 -0.04 < 5 × 10-8 CELSR2 [31]
rs646776 109 620 053 21 312 24 -0.16  5 × 10-42 PSRC1 [29]
rs12740374 109 619 113 19 648 21 -0.23  2.0 × 10-42 [30]
rs599839 109 623 689 11 685 21 -0.05  1.7 × 10-15 [40]
rs646776 109 620 053 4337 21 -0.16 4.3 × 10-9 [40]
rs12740374 109 619 113 5592 21 -0.15 1.8 × 10-9 SORT1 [36]
rs646776 109 620 053 5592 22 -0.14 3.8 × 10-8 [36]
rs629301 109 619 829 > 100 000 22 -5.65   1.0 × 10-170 [28]
1 rs11591147 55 278 235 16 826 2 -0.12 < 5 × 10-8 PCSK9 [31]
rs11591147 55 278 235 12 167 2 -0.13 < 5 × 10-8 [31]
rs11591147 55 278 235 21 312 1 -0.26  2.0 × 10-24 [30]
rs11206510 55 268 627 19394  3.5 × 10-11 [20]
rs11206510 55 268 627 19 629 19 -0.09 4.0 × 10-8 [30]
rs11591147 55 278 235 5592 -0.55  9.3 × 10-12 [36]
rs2479409 55 277 238 > 100 000 30 2.01  2.0 × 10-28 [28]
2 rs693 21 085 700 2601 22 7.1 × 10-7 APOB [38]
rs562338 21 141 826 1636 + 2631 17  8.6 × 10-13 [34]
rs515135 21 139 562 8589 83  3.1 × 10-14 [20]
rs562338 21 141 826 8589 + 10 849  5.6 × 10-22 [20]
rs693 21 085 700 16 112 52 -0.098  3.6 × 10-17 [28]
rs506585 21 250 687 6382 20 -4.6 9.3 × 10-9 [32]
rs506585 21 250 687 16 842 20 -0.04 < 5 × 10-8 [31]
rs693 21 085 700 21 312 48 0.12  1.0 × 10-21 [29]
rs515135 21 139 562 19 648 20 -0.16  5.0 × 10-29 [30]
rs562338 21 141 826 11 685 20 -0.04 1.4 × 10-9 [40]
rs1713222 21 124 828 4337 16 -0.17 1.0 × 10-8 [40]
rs562338 21 141 826 5592 18 -0.18  1.2 × 10-11 [36]
rs1367117 21 117 405 > 100 000 30 4.05  4.0 × 10-114 [28]
2 rs6756629 43 918 594 12 706 92 0.157  2.6 × 10-10 ABCG5 [27]
2 rs6544713 43 927 385 23 456 32 0.15   2 × 10-20 ABCG8 [30]
rs4299376 43 926 080 > 100 000 30 2.75  2.0 × 10-47 ABCG5/8 [28]
2 rs780094 27 594 741 16 841 40 0.03 < 5 × 10-8 GCKR [31]
5 rs1501908 156 330 747 27 280 37 -0.07   1 × 10-11 TIMD4-HAVCR1 [30]
5 rs3846662 74 686 840 16 135 44 0.079  1.5 × 10-11 HMGCR [27]
rs12654264 74 684 359 2758 + 18 554 39 0.1  1.0 × 10-20 [29]
rs3846663 74 691 482 19 648 38 0.07  8.0 × 10-12 [30]
rs12654264 74 684 359 5592 38 0.11 5.8 × 10-8 [36]
6 rs3757354 88 570 980 > 100 000 22 -1.43  1.0 × 10-11 MYLIP [28]
6 rs1800562 26 201 120 > 100 000 6 -2.22  6.0 × 10-10 HFE [28]
6 rs1564348 160 498 850 > 100 000 17 -0.56  2.0 × 10-17 LPA [28]
7 rs12670798 21 573 877 12 695 24 0.089 6.1 × 10-9 DNAH11 [27]
7 rs4731702 130 083 924 16 747 49 -0.02 < 5 × 10-8 KLF14 [31]
8 rs6982636 126 548 497 16 798 47 -0.02 < 5 × 10-8 TRIB1 [31]
8 rs11136341 145 115 531 > 100 000 40 1.4  4.0 × 10-13 PLEC1 [28]
9 rs9411489 135 144 821 > 100 000 20 2.24  6.0 × 10-13 ABO [28]
11 rs174570 61 353 788 16 153 83 0.11  4.4 × 10-13 FADS2/3 [31]
11 rs3135506 116 167 617 16 837 6 -0.13 < 5 × 10-8 APOA1-A5 [31]
rs2072560 116 167 036 5592 6 0.22 2.4 × 10-7 [36]
11 rs11220462 125 749 162 > 100 000 14 1.95  1.0 × 10-15 ST3GAL4 [28]
12 rs7307277 123 041 109 16 804 34 -0.02 < 5 × 10-8 CCDC92/DNAH10/ZNF664 [31]
12 rs2650000 119 873 345 39 340 36 0.07 2.0 × 10-8 HNF1A [30]
14 rs8017377 51 667 587 > 100 000 47 1.14  5.0 × 10-1 NYNRIN [28]
16 rs708272 55 553 789 16 843 43 -0.04 < 5 × 10-8 CETP [31]
rs17231506 55 552 029 5592 32 -0.11 5.0 × 10-7 [36]
17 rs7206971 42 780 114 > 100 000 49 0.78 2.0 × 10-8 OSBPL7 [28]
19 rs1699614 19 519 472 21 312 10 -0.1 3 × 10-8 NCAN, CILP2, PBX4 [29]
rs2228603 19 190 924 8589 7 1.8 × 10-7 [20]
rs16996148 19 519 472 19 394 2.7 × 10-9 [20]
rs10401969 19 268 718 19 648 6 -0.05 2.0 × 10-8 [30]
19 rs688 11 088 602 4267 45 7.3 × 10-7 LDLR [34]
rs6511720 11 063 306 8589 9  6.8 × 10-10 [20]
rs6511720 11 063 306 19 394  4.2 × 10-23 [20]
rs2228671 11 071 912 16 148 82 0.136  4.2 × 10-14 [27]
rs6511720 11 063 306 6382 12 -7.7  5.2 × 10-15 [32]
rs6511720 11 063 306 16 843 12 -0.04 < 5 × 10-8 [31]
rs6511720 11 063 306 21 312 10 -0.26   2 × 10-51 [29]
rs6511720 11 063 306 19 648 10 -0.26  2.0 × 10-26 [30]
rs2228671 11 071 912 4337 12 -0.18 1.1 × 10-8 [40]
rs17248720 11 059 187 5592 13 -0.31  7.8 × 10-25 [36]
rs6511720 11 063 306 > 100 000 11 6.99  4.0 × 10-117 [28]
19 rs2075650 50 087 459 12 697 15 0.16  9.3 × 10-19 TOMM40-APOE [27]
rs157580 50 087 106 16 160 68 -0.111  2.1 × 10-19 [27]
rs2075650 50 087 459 4337 13 0.23  7.1 × 10-14 [40]
rs2075650 50 087 459 5592 14 0.23  1.1 × 10-14 [36]
19 rs4420638 50 114 786 2601 22  3.4 × 10-13 APOC1-APOE [38]
rs4420638 50 114 786 4267 19  8.3 × 10-14 [34]
rs4420638 50 114 786 8589 12  1.5 × 10-21 [20]
rs4420638 50 114 786 19 394  3.0 × 10-43 [20]
rs4803750 49 939 467 6382 7  -9.6  3.6 × 10-14 [32]
rs4803750 49 939 467 16 616 7  -9.3 < 5 × 10-8 [32]
rs4420638 50 114 786 21 312 20 0.19  1.0 × 10-60 [29]
rs4420638 50 114 786 11 881 16 0.29  4.0 × 10-27 [30]
rs4420638 50 114 786 11 685 18 0.06  1.2 × 10-20 APOC2 [40]
rs12721046 50 113 094 5592 15 0.21  7.6 × 10-14 [36]
rs12721109 50 139 061 5592 2 -0.54  5.1 × 10-14 [36]
rs4420638 50 114 786 > 100 000 17 7.14   9.0 × 10-147 APOE [28]
19 rs10402271 50 021 054 11 685 33 0.03 4.1 × 10-8 BCAM [40]
rs4605275 50 030 333 4337 31 -0.13 4.7 × 10-8 [40]
19 rs4803750 49 939 467 4337 7 -0.28  2.4 × 10-11 BCL3 [40]
rs1531517 49 934 013 5592 7 -0.22 5.3 × 10-8 [36]
19 rs10402271 50 021 054 5592 33 0.15  2.1 × 10-12 PVRL2 [36]
20 rs6065906 43 987 422 16 843 48 0.02 < 5 × 10-8 PLPT [31]
20 rs6102059 38 662 198 28 895 32 -0.06 4.0 × 10-9 MAFB [30]
20 rs6029526 39 106 032 > 100 000 47 1.39  4.0 × 10-19 TOP1 [28]

β: Estimated mean; CELSR2: Cadherin EGF LAG seven-pass G-type receptor 2; PSRC1: Proline/serine-rich coiled-coil 1; SORT1: Sortilin 1; PCSK9: Proprotein convertase subtilisin/kexin type 9; APOB: Apolipoprotein B; ABCG: ATP-binding cassette sub-family G; GCKR: Glucokinase (hexokinase 4) regulator; TIMD4: T-cell immunoglobulin and mucin domain containing 4; HAVCR1: Hepatitis A virus cellular receptor 1; HMGCR: 3-hydroxy-3-methylglutaryl-CoA reductase; MYLIP: Myosin regulatory light chain interacting protein; HFE: Human hemochromatosis; LPA: Lipoprotein, Lp(a); DNAH11: Dynein axonemal heavy chain 11; KLF14: Kruppel-like factor 14; TRIB1: Tribbles homolog 1; PLEC1: Plectin; ABO: ABO blood group (transferase A, α 1-3-N-acetylgalactosaminyltransferase, transferase B, α 1-3-galactosyltransferase); FADS: Fatty acid desaturase; APOA1: Apolipoprotien A1; ST3GAL4: ST3 β-galactoside α-2,3-sialyltransferase 4; CCDC92: Coiled-coil domain containing 92; DNAH10: Dynein axonemal heavy chain 10; ZNF664: Zinc finger protein 664; HNF1A: HNF1 homeobox A; NYNRIN: NYN domain and retroviral integrase containing; CETP: Cholesteryl ester transfer protein plasma; OSBPL7: Oxysterol binding protein-like 7; NCAN: Nucleoporin 214 kDa; CILP2: Cartilage intermediate layer protein 2; PBX4: Pre-B-cell leukemia homeobox 4; LDLR: Low density lipoprotein receptor; TOMM40: Translocase of outer mitochondrial membrane 40 homolog; APOE: Apolipoprotien E; APOC2: Apolipoprotein C-II; APOE: Apolipoprotien E; BCAM: Basal cell adhesion molecule; BCL3: B-cell CLL/lymphoma 3; PVRL2: Poliovirus receptor-related 2 (herpesvirus entry mediator B); PLPT: Proteolipid protein; MAFB: V-maf musculoaponeurotic fibrosarcoma oncogene homolog B; TOP1: Topoisomerase (DNA) 1; SNP: Single nucleotide polymorphisms; MAF: Minor allele frequency.

In total, 43 different loci have been found to be associated with triglycerides (TAG) in GWAS (Figure 5 and Table 5). SNPs in proximity to ANGPTL3, APOB, GCKR, MLXIPL, LPL, TRIB1, APOA1/A4/A5/C3, and NCAN-CILP2-PBX4 have been associated with TAG in several GWAS.

Figure 5.

Figure 5

Significant genome-wide association study findings in triglycerides. DOCK7: Dedicator of cytokinesis 7; PCSK9: Proprotein convertase subtilisin/kexin type 9; GALNT2: N-acetylgalactosaminyltransferase 2; ANGPTL3: Angiopoietin-like 3; APOB: Apolipoprotien B; GCKR: Glucokinase (hexokinase 4) regulator; COBLL1: COBL-like 1; MSL2L1: Male-specific lethal 2 homolog; KLHL8: Kelch-like 8; MAP3K1: Mitogen-activated protein kinase kinase kinase 1; BTNL2: Butyrophilin-like 2 (MHC class II associated); HLA: Major histocompatibility complex; TYW1B: tRNA-yW synthesizing protein 1 homolog B; TBL2: Transducin (β)-like 2; BCL7B: B-cell CLL/lymphoma 7B; TBL2: Transducin (β)-like 2; MLXIPL: MLX interacting protein-like; KLF14: Kruppel-like factor 14; BAZ1B: Bromodomain adjacent to zinc finger domain 1B; PINX1: PIN2/TERF1 interacting, telomerase inhibitor 1; NAT2: N-acetyltransferase 2 (arylamine N-acetyltransferase); LPL: Lipoprotein lipase; PP1R3B: Protein phosphatase 1, regulatory (inhibitor) subunit 3B; TRIB1: Tribbles homolog 1; SLC18A1: Solute carrier family 18 (vesicular monoamine) member 1; XKR6: XK Kell blood group complex subunit-related family member 6; AMAC1L2: Acyl-malonyl condensing enzyme 1-like 2; JMJD1C: Jumonji domain containing 1C; CYP26A1: Cytochrome P450 family 26 subfamily A polypeptide 1; APOA1: Apolipoprotein A-I; FADS: Fatty acid desaturase; CCDC92: Coiled-coil domain containing 92; DNAH10: Dynein axonemal heavy chain 10; ZNF664: Zinc finger protein 664; LRP1: Low density lipoprotein receptor-related protein 1; CAPN3: Calpain 3, (p94); FRMD5: FERM domain containing 5; LIPC: Hepatic lipase; CTF1: Cardiotrophin 1; CETP: Cholesteryl ester transfer protein plasma; TOMM40: Translocase of outer mitochondrial membrane 40 homolog; APOE: Apolipoprotien E; NCAN: Nucleoporin 214kDa; CILP2: Cartilage intermediate layer protein 2; PBX4: Pre-B-cell leukemia homeobox 4; GMIP: GEM interacting protein; PLPT: Palmitoyl-protein thioesterase 1; PLA2G6: Phospholipase A2, group VI (cytosolic; calcium-independent).

Table 5.

Single nucleotide polymorphisms associated with triglycerides identified through genome-wide association studies

Chromosome Strongest SNP Studies Sample size MAF (average) β Pvalue Proximal gene Ref.
1 rs1167998 62 704 220 14 268 32 -0.091  2.0 × 10-12 DOCK7 [27]
rs10889353 62 890 784 14 337 32 -0.085  8.2 × 10-11 [27]
1 rs11591147 55 278 235 16 826 2 -0.09 < 5 × 10-8 PCSK9 [31]
1 rs12042319 62 822 407 4267 34 3.2 × 10-7 ANGPTL3 [34]
rs10889353 62 890 784 16 831 33 -0.03 < 5 × 10-8 [31]
rs10889353 62 890 784 8993 14 -0.13 2.0 × 10-9 [37]
rs12130333 62 964 365 21 312 22 -0.11 2.0 × 10-8 [29]
rs10889353 62 890 784 19 834 33 -0.05 3.0 × 10-7 [30]
rs1748195 62 822 181 18 243  1.7 × 10-10 [20]
rs2131925 62 798 530 > 100 000 32 -4.94  9.0 × 10-43 [28]
1 rs4846914 228 362 314 21 312 40 0.08  7.0 × 10-15 GALNT2 [28]
2 rs6754295 21 059 688 14 338 25 -0.077 2.5 × 10-8 APOB [27]
rs673548 21 091 049 12 694 76 0.086 1.1 × 10-8 [27]
rs673548 21 091 049 16 797 21 -0.04 < 5 × 10-8 [31]
rs693 21 085 700 21 312 48 0.12  1.0 × 10-21 [29]
rs7557067 21 061 717 19 840 22 -0.08  9.0 × 10-12 [30]
rs1042034 21 078 786 > 100 000 22 -5.99  1.0 × 10-45 [28]
2 rs780094 27 594 741 2659 35 3.7 × 10-8 GCKR [38]
rs780094 27 594 741 4267 39  8.1 × 10-14 [34]
rs1260326 27 584 444 8684 40  1.5 × 10-15 [20]
rs780094 27 594 741 18 243  6.1 × 10-32 [20]
rs780094 27 594 741 17 790 63 -0.103  3.1 × 10-20 [27]
rs1260326 27 584 444 6382 41 0.07  1.3 × 10-16 [32]
rs1260326 27 584 444 16 650 41 0.07 < 5 × 10-8 [31]
rs1260326 27 584 444 8993 45 -0.101  1.1 × 10-11 [37]
rs780094 27 594 741 21 312 34 0.13  3.0 × 10-14 [29]
rs1260326 27 584 444 19 840 45 0.12  2.0 × 10-31 [30]
rs1260326 27 584 444 5592 40 0.06 1.8 × 10-7 [36]
rs1260326 27 584 444 > 100 000 41 8.76  6.0 × 10-133 [28]
2 rs10195252 165 221 337 > 100 000 40 -2.01  2.0 × 10-10 COBLL1 [28]
3 rs645040 137 409 312 > 100 000 22 -2.22 3.0 × 10-8 MSL2L1 [28]
4 rs442177 88 249 285 > 100 000 41 -2.25  9.0 × 10-12 KLHL8 [28]
5 rs9686661 55 897 543 > 100 000 20 2.57  1.0 × 10-10 MAP3K1 [28]
6 rs2076530 32 471 794 16 829 43 0.03 < 5 × 10-8 BTNL2 [31]
6 rs2247056 31 373 469 > 100 000 25 -2.99  2.0 × 10-15 HLA [28]
7 rs13238203 71 767 603 > 100 000 4 -7.91 1.0 × 10-9 TYW1B [28]
7 rs17145738 72 620 810 2758 + 18 554 13 -0.14  7.0 × 10-22 BCL7B, TBL2, MLXIPL [29]
TBL2
rs11974409 72 627 326 5592 20 -0.08 5.7 × 10-9 MLXIPL [36]
rs10551921 107 998 852 5592 20 -0.08 1.3 × 10-8 [36]
7 rs2240466 72 494 205 12 680 87 0.137  1.1 × 10-12 MLXIPL [27]
rs11974409 72 627 326 16 839 19 -0.04 < 5 × 10-8 [31]
rs714052 72 502 805 19 840 12 -0.16  3.0 × 10-15 [30]
rs17145738 72 620 810 18 243  2.0 × 10-12 [20]
rs17145738 72 620 810 > 100 000 12 -9.32  6.0 × 10-58 [28]
7 rs4731702 130 083 924 16 714 49 -0.03 < 5 × 10-8 KLF14 [31]
7 rs17145713 72 542 746 5592 20 -0.09  5.3 × 10-10 BAZ1B [36]
8 rs11776767 10 721 339 > 100 000 37 2.01 1.0 × 10-8 PINX1 [28]
8 rs1495741 18 317 161 > 100 000 22 2.85  5.0 × 10-14 NAT2 [28]
8 rs2083637 19 909 455 14 344 26 -0.107  1.0 × 10-14 LPL [27]
rs10096633 19 875 201 12 708 88 0.174  1.9 × 10-18 [27]
rs12678919 19 888 502 19 840 10 -0.25  2.0 × 10-41 [30]
rs10096633 19 875 201 8993 12 -0.169  9.3 × 10-14 [37]
rs331 19 864 685 5592 25 -0.08  1.7 × 10-11 [36]
rs12678919 19 888 502 > 100 000 12 -13.64   2.0 × 10-115 [28]
8 rs17482753 19 876 926 2652 11 4.9 × 10-7 LPL [38]
rs17482753 19 876 926 1636 10 1.2 × 10-9 [34]
rs17482753 19 876 926 1636 + 2631  5.2 × 10-15 [34]
rs6993414 19 947 198 8684 46  1.4 × 10-13 [20]
rs10503669 19 891 970 4267  3.9 × 10-22 [20]
rs328 19 864 004 6382 11 -0.09  4.7 × 10-11 Intergenic, PPP1R3B, LPL [32]
rs331 19 864 685 6382 28 -0.06 1.7 × 10-9 [32]
rs328 19 864 685 16 812 11 -0.09 < 5 × 10-8 LPL [31]
rs328 19 864 004 21 242 9 -0.19  2.0 × 10-28 [29]
8 rs6982636 126 548 497 16 765 47 -0.03 < 5 × 10-8 TRIB1 [31]
rs17321515 12 655 591 21 242 49 -0.08  4.0 × 10-17 [29]
rs2954029 126 560 154 8684 56 2.8 × 10-8 [20]
rs17321515 12 655 591 14 176  7.0 × 10-13 [20]
rs2954029 126 560 154 19 840 44 -0.11  3.0 × 10-19 [30]
rs2954029 126 560 154 > 100 000 47 -5.64  3.0 × 10-55 [28]
8 rs3916027 19 869 148 5592 27 -0.08  1.0 × 10-10 SLC18A1 [36]
8 rs7819412 11 082 571 33 336 48 -0.04 3.0 × 10-8 XKR6-AMAC1L2 [30]
10 rs10761731 64 697 616 > 100 000 43 -2.38  3.0 × 10-12 JMJD1C [28]
10 rs2068888 94 829 632 > 100 000 46 -2.28 2.0 × 10-8 CYP26A1 [28]
11 rs12272004 116 108 934 12 622 7 -0.181  5.4 × 10-13 APO (A1/A4/A5/C3) [27]
rs6589566 116 157 633 1636 6  1.5 × 10-11 [34]
rs6589566 116 157 633 1636 + 2631  3.7 × 10-12 [34]
rs964184 116 154 127 8684 12  1.5 × 10-16 [20]
rs12286037 116 157 417 18 422  1.0 × 10-26 [20]
rs3135506 116 167 617 6382 6 0.13  5.5 × 10-12 [32]
rs662799 116 168 917 6382 6 0.14  2.9 × 10-15 [32]
rs3135506 116 167 617 16 804 6 0.14 < 5 × 10-8 [31]
rs7350481 116 091 493 8993 43 0.24  1.4 × 10-49 [37]
rs28927680 116 124 283 21 312 7 0.26  2.0 × 10-17 [29]
rs964184 116 154 127 19 840 14 0.3  4.0 × 10-62 [30]
rs651821 116 167 789 5592 6 0.21  8.8 × 10-21 APOA1 [36]
rs964184 116 154 127 > 100 000 13 16.95   7.0 × 10-240 [28]
11 rs174547 61 327 359 38 846 33 0.06  2.0 × 10-14 FADS1-S3 [30]
rs174546 61 326 406 > 100 000 34 3.82  5.0 × 10-24 [28]
11 rs6589565 116 145 447 5592 7 0.19  4.5 × 10-20 BUD13 [36]
11 rs2075290 116 158 506 5592 7 0.19  6.6 × 10-20 ZNF259 [36]
12 rs7307277 123 041 109 16 771 34 -0.04 < 5 × 10-8 CCDC92/DNAH10/ [31]
ZNF664
12 rs11613352 - > 100 000 23   -2.7  4.0 × 10-10 LRP1 [28]
15 rs2412710 40 471 079 > 100 000 2 7 2.0 × 10-8 CAPN3 [28]
15 rs2929282 42 033 223 > 100 000 5 5.13  2.0 × 10-11 FRMD5 [28]
15 rs4775041 56 461 987 8684 67 7.3 × 10-5 LIPC [20]
rs4775041 56 461 987 17 104 1.6 × 10-8 [20]
16 Rs11649653 30 825 988 > 100 000 40 -2.13 3.0 × 10-8 CTF1 [28]
16 rs1800775 55 552 737 16 779 49 -0.03 < 5 × 10-8 CETP [31]
19 rs157580 50 087 106 16 160 33 -0.069 1.2 × 10-8 TOMM40-APOE [27]
rs439401 50 106 291 11 885 68 0.086 1.8 × 10-9 [27]
19 rs16996148 19 519 472 21 312 10   -0.1 4.0 × 10-9 NCAN, CILP2, PBX4 [29]
rs10401969 19 268 718 8684 8 2.3 × 10-7 [20]
rs16996148 19 519 472 18 391 2.5 × 10-9 [20]
rs17216525 46 471 516 19 840 7 -0.11  4.0 × 10-11 [30]
rs12610185 19 582 722 5592 9   -0.1 5.6 × 10-7 [36]
19 rs439401 50 106 291 16 638 35 -0.04 < 5 × 10-8 APOC1-APOE [31]
rs439401 50 106 291 > 100 000 36   -5.5  1.0 × 10-30 APOE [28]
19 rs2304128 19 607 151 5592 9   -0.1 3.2 × 10-7 GMI [36]
20 rs6065906 43 987 422 16 810 48 0.04 < 5 × 10-8 PLPT [31]
rs7679 44 009 909 38 561 19 0.07  7.0 × 10-11 [30]
22 rs5756931 36 875 979 > 100 000 40 -1.54 4.0 × 10-8 PLA2G6 [28]

β: Estimated mean; DOCK7: Dedicator of cytokinesis 7; PCSK9: Proprotein convertase subtilisin/kexin type 9; GALNT2: N-acetylgalactosaminyltransferase 2; ANGPTL3: Angiopoietin-like 3; APOB: Apolipoprotien B; GCKR: Glucokinase (hexokinase 4) regulator; COBLL1: COBL-like 1; MSL2L1: Male-specific lethal 2 homolog; KLHL8: Kelch-like 8; MAP3K1: Mitogen-activated protein kinase kinase kinase 1; BTNL2: Butyrophilin-like 2 (MHC class II associated); HLA: Major histocompatibility complex; TYW1B: tRNA-yW synthesizing protein 1 homolog B; TBL2: Transducin (β)-like 2; BCL7B: B-cell CLL/lymphoma 7B; TBL2: Transducin (β)-like 2; MLXIPL: MLX interacting protein-like; KLF14: Kruppel-like factor 14; BAZ1B: Bromodomain adjacent to zinc finger domain 1B; PINX1: PIN2/TERF1 interacting, telomerase inhibitor 1; NAT2: N-acetyltransferase 2 (arylamine N-acetyltransferase); LPL: Lipoprotein lipase; PP1R3B: Protein phosphatase 1, regulatory (inhibitor) subunit 3B; TRIB1: Tribbles homolog 1; SLC18A1: Solute carrier family 18 (vesicular monoamine) member 1; XKR6: XK Kell blood group complex subunit-related family member 6; AMAC1L2: Acyl-malonyl condensing enzyme 1-like 2; JMJD1C: Jumonji domain containing 1C; CYP26A1: Cytochrome P450 family 26 subfamily A polypeptide 1; APOA1: Apolipoprotein A-I; FADS: Fatty acid desaturase; CCDC92: Coiled-coil domain containing 92; DNAH10: Dynein axonemal heavy chain 10; ZNF664: Zinc finger protein 664; LRP1: Low density lipoprotein receptor-related protein 1; CAPN3: Calpain 3, (p94); FRMD5: FERM domain containing 5; LIPC: Hepatic lipase; CTF1: Cardiotrophin 1; CETP: Cholesteryl ester transfer protein plasma; TOMM40: Translocase of outer mitochondrial membrane 40 homolog; APOE: Apolipoprotien E; NCAN: Nucleoporin 214 kDa; CILP2: Cartilage intermediate layer protein 2; PBX4: Pre-B-cell leukemia homeobox 4; GMIP: GEM interacting protein; PLPT: Palmitoyl-protein thioesterase 1; PLA2G6: Phospholipase A2, group VI (cytosolic, calcium-independent); SNP: Single nucleotide polymorphisms; MAF: Minor allele frequency.

GWAS AND BP

In 2007, the Framingham Heart Study[41] reported on 1327 individuals whose BP had been sampled longitudinally in the Framingham Community project. In the same year, the WTCCC[17] reported results from 2000 Northern European subjects with HTN. Although a few SNPs did reach a statistical significance of P < 10-5, none of them achieved genome-wide significance (P < 5 × 10-8). The most significant GWAS findings in blood pressure are summarized in Table 6 and Figure 6 [42-50].

Table 6.

Single nucleotide polymorphisms associated with hypertension and blood pressure in genome-wide association studies

Chr SNP Position Ancestry N (discovery) Phenotype Risk allele Risk allele frequency OR/β P Nearest gene Ref.
1 rs17367504 11 785 365 E 34 433 SBP G 0.14 -0.85 2 × 10-13 MTHFR, CLCN6, NPPA, NPPB, AGTRAP [42,43]
2 rs6749447 168 749 632 E 542 SBP G 0.28 1.90 8 × 10-5 STK39 [47]
3 rs9815354 41 887 655 E 29 136 DBP A 0.17 0.49 3 × 10-9 ULK4 [42,43]
4 rs16998073 81 403 365 E 34 433 DBP T 0.21 0.50 1 × 10-21 FGF5, PRDM8, C4orf22 [42,43]
4 rs991316 100 541 468 AA 1017 SBP T 0.45 1.62 5 × 10-6 ADH7 [44]
10 rs11014166 18 748 804 E 29 136 DBP A 0.66 0.37 1 × 10-8 CACNB2 [42,43]
10 rs1530440 63 194 597 E 34 433 DBP T 0.19 -0.39 1 × 10-9 C10orf107, TMEM26, RTKN2, RHOBTB1, ARID5B, CYP17A1 [42,43]
10 rs1004467 104 584 497 E 29 136 SBP A 0.90 1.05 1 × 10-10 TMEM26, RTKN2, RHOBTB1, ARID5B, CYP17A1 [42,43]
10 rs11191548 104 836 168 E 34 433 SBP T 0.91 1.16 3 × 10-7 CYP17A1, AS3MT, CNNM2, NT5C2 [42,43]
11 rs381815 16 858 844 E 29 136 SBP T 0.26 0.65 2 × 10-9 PLEKHA7 [42,43]
12 rs17249754 88584 EA 8842 SBP, DBP A 0.37 1.06 9 × 10-7 ATP2B1 [49]
12 rs2681472 88 533 090 E 29 136 SBP, DBP, HTN A 0.83 0.50 2 × 10-9 ATP2B1 [42,43]
12 rs2681492, 88 537 220 E 29 136 SBP, DBP, HTN T 0.80 0.85 4 × 10-11 ATP2B1 [42,43]
12 rs3184504 110 368 991 E 29 136 SBP, DBP T 0.49 0.48 3 × 10-14 ATXN2, SH2B3 [42,43]
12 rs653178 110 492 139 E 34 433 DBP T 0.53 -0.46 3 × 10-18 ATXN2, SH2B3 [42,43]
12 rs2384550 113 837 114 E 29 136 DBP A 0.35 0.43 4 × 10-8 TBX3, TBX5 [42,43]
15 rs1550576 56 000 706 AA 1017 SBP C 0.86 1.92 3 × 10-6 ALDH1A2 [44]
15 rs1378942 72 865 396 E 34 433 DBP C 0.36 0.43 1 × 10-23 CSK, CYP1A1, CYP1A2, LMAN1L, CPLX3, ARID3B, ULK3 [42,43]
15 rs6495122 72 912 698 E 29 136 DBP A 0.42 0.40 2 × 10-10 CSK, CYP1A1, CYP1A2, LMAN1L, CPLX3, ARID3B, ULK3 [42,43]
16 rs13333226 20 273 155 E 3320 HTN A 0.81 1.15 4 × 10-11 UMOD [50]
16 rs11646213 81 200 152 E 1977 HTN T 0.60 1.28 8 × 10-6 CDH13 [48]
17 rs12946454 40 563 647 E 34 433 SBP T 0.28 0.57 1 × 10-8 PLCD3, ACBD4, HEXIM1, HEXIM2 [42,43]
17 rs16948048 44 795 465 E 34 433 DBP G 0.39 0.31 5 × 10-9 ZNF652, PHB [42,43]

E: European; AA: African American; EA: East Asians; SBP: Systolic blood pressure; DBP: Diastolic blood pressure; HTN: Hypertension; ACBD4: Acyl-CoA binding domain containing 4; ADH7: Alcohol dehydrogenase 7 (class IV), mu or sigma polypeptide; AGTRAP: Angiotensin II receptor-associated protein; ALDH1A2: Aldehyde dehydrogenase 1 family, member A2; ARID5B: AT rich interactive domain 5B (MRF1-like); AS3MT: Arsenic (+3 oxidation state) methyltransferase; ATP2B1: ATPase; Ca++ transporting; plasma membrane 1; ATXN2: Ataxin 2; C10orf107: Chromosome 10 open reading frame 107; C4orf22: Chromosome 4 open reading frame 22; CACNB2: Calcium channel, voltage-dependent, β 2 subunit; CDH13: Cadherin 13, H-cadherin (heart); CLCN6: Chloride channel 6; CNNM2: Cyclin M2; CPLX3: Complexin 3; CSK: C-src tyrosine kinase; CYP17A1: Cytochrome P450, family 17, subfamily A, polypeptide 1; CYP1A1: Cytochrome P450; family 1, subfamily A, polypeptide 1; CYP1A2: Cytochrome P450, family 1, subfamily A, polypeptide 2; FGF5: Fibroblast growth factor 5; HEXIM1: Hexamethylene bis-acetamide inducible 1; HEXIM2: Hexamthylene bis-acetamide inducible 2; LMAN1L: Lectin, mannose-binding, 1 like; MTHFR: Methylenetetrahydrofolate reductase (NAD(P)H); NPPA: Natriuretic peptide A; NPPB: Natriuretic peptide B; NT5C2: 5'-nucleotidase, cytosolic II; PHB: Prohibitin; PLCD3: Phospholipase C, Δ 3; PLEKHA7: Pleckstrin homology domain containing, family A member 7; PRDM8: PR domain containing 8; RHOBTB1: Rho-related BTB domain containing 1; RTKN2: Rhotekin 2; SH2B3: SH2B adaptor protein 3; STK39: Serine threonine kinase 39; TBX3: T-box 3; TBX5: T-box 5; TMEM26: Transmembrane protein 26; ULK3: Unc-51-like kinase 3 (C. elegans); ULK4: Unc-51-like kinase 4 (C. elegans); UMOD: Uromodulin, ZNF652: Zinc finger protein 652; SNP: Single nucleotide polymorphisms; OR: Odds ratio.

Figure 6.

Figure 6

Significant genome-wide association study findings in blood pressure. ACBD4: Acyl-CoA binding domain containing 4; ADH7: Alcohol dehydrogenase 7 (class IV), mu or sigma polypeptide; AGTRAP: Angiotensin II receptor-associated protein; ALDH1A2: Aldehyde dehydrogenase 1 family, member A2; ARID5B: AT rich interactive domain 5B (MRF1-like); AS3MT: Arsenic (+3 oxidation state) methyltransferase; ATP2B1: ATPase, Ca++ transporting; plasma membrane 1; ATXN2: Ataxin 2; C10orf107: Chromosome 10 open reading frame 107; C4orf22: Chromosome 4 open reading frame 22; CACNB2: Calcium channel, voltage-dependent, β 2 subunit; CDH13: Cadherin 13, H-cadherin (heart); CLCN6: Chloride channel 6; CNNM2: Cyclin M2; CPLX3: Complexin 3; CSK: C-src tyrosine kinase; CYP17A1: Cytochrome P450, family 17, subfamily A; polypeptide 1; CYP1A1: Cytochrome P450, family 1, subfamily A, polypeptide 1; CYP1A2: Cytochrome P450, family 1, subfamily A, polypeptide 2; FGF5: Fibroblast growth factor 5; HEXIM1: Hexamethylene bis-acetamide inducible 1; HEXIM2: Hexamthylene bis-acetamide inducible 2; LMAN1L: Lectin, mannose-binding, 1 like; MTHFR: Methylenetetrahydrofolate reductase (NAD(P)H); NPPA: Natriuretic peptide A; NPPB: Natriuretic peptide B; NT5C2: 5'-nucleotidase, cytosolic II; PHB: Prohibitin; PLCD3: Phospholipase C, Δ 3; PLEKHA7: Pleckstrin homology domain containing, family A member 7; PRDM8: PR domain containing 8; RHOBTB1: Rho-related BTB domain containing 1; RTKN2: Rhotekin 2; SH2B3: SH2B adaptor protein 3; STK39: Serine threonine kinase 39; TBX3: T-box 3; TBX5: T-box 5; TMEM26: Transmembrane protein 26; ULK3: Unc-51-like kinase 3 (C. elegans); ULK4: Unc-51-like kinase 4 (C. elegans); UMOD: Uromodulin; ZNF652: Zinc finger protein 652.

The global BPgen consortium[42] studied 34 433 subjects of European ancestry, subsequently followed up the findings with direct genotyping of 71 225 individuals of European ancestry and 12 889 individuals of Indian Asian ancestry and conducted a joint analysis. They identified an association between systolic or diastolic BP (SBP/DBP) and common variants in eight regions near the CYP17A1 (intergenic CNNM2/NT5C2), CYP1A2 (intron CSK), FGF5, SH2B3 (intron ATXN2), MTHFR, c10orf107, ZNF652 and intron PLCD3. Furthermore, three of these common variants (MTHFR, CYP17A1 and CYP17A2 or CSK) were associated with HTN (P < 5 × 10-8). The CHARGE consortium study (n = 29 136) identified 13, 20 and 10 SNPs for SBP, DBP and HTN respectively[43].

In a joint meta-analysis of CHARGE consortium data with BPgen consortium data (n = 34 433)[43], four CHARGE loci attained genome-wide significance for SBP (ATP2B1, CYP17A1, PLEKHA7, SH2B3), six for DBP (ATP2B1, CACNB2, CSK-ULK3, SH2B3, TBX3-TBX5, ULK4) and one for HTN (ATP2B1). The KORA study by Org et al[48] in a South German Cohort identified a SNP upstream of T-cadherin adhesion molecule (CDH13) gene on chromosome 16 (rs11646213) as significantly associated with HTN at a genome-wide level. Finally, in a population of African origin, Adeyemo et al[44] identified four common variants (MYLIP, chr 6; YWHAZ, chr 8; IPO7, chr 11 and SLC24A4, chr 14) associated with SBP with genome-wide significance.

Wang et al[47] identified STK39, SPAK (STE20/SPS1-related proline and alanine rich kinase; a serine/threonine kinase) with a P value of 1.6 × 10-7 in an Amish cohort. Several other studies also identified potentially important genetic loci associated with BP traits with borderline genome-wide significance. These include ATP2B1[43,51] (ATPase, Ca++ transporting, plasma membrane 1) on chromosome 12, FOXD3[41] (fork head box D3) on chromosome 1, CCNG1 (cyclin G1)[48] on chromosome 5, BCAT1 (branched chain aminotransferase 1, cytosolic)[17] on chromosome 12, ATXN2 (ataxin 2)[42,43] on chromosome 12 and TBX3 (T-box3)[43] on chromosome 12 (Figure 6 and Table 6). However, none of these loci were replicated in other studies. Using an extreme case-control design, Padmanabhan et al[50] identified a novel HTN locus on chromosome 16 in the promoter region of uromodulin (UMOD; rs13333226, combined P value 3.6 × 10-11). The minor G allele of this SNP is associated with a lower risk of HTN [OR (95% CI): 0.87 (0.84-0.91)], reduced urinary UMOD excretion and increased estimated glomerular filtration rate (3.6 mL/min per minor-allele, P = 0.012), and borderline association with renal sodium balance.

CLINICAL IMPLICATIONS

GWAS are a useful tool in the identification of new and unexpected genetic loci of common diseases and traits, thus providing key novel insights into disease biology. But the clinical utility of these discoveries is negligible at this stage. The comparatively small numbers of variants which have been successfully replicated in several independent studies explain only a small proportion of the observed variation of these traits and explain in aggregate less than 20% of disease heritability. For example, the loci underpinning LDL-C levels[28] and BP account for < 20% of the variance of these quantitative traits. The variants associated with CHD increase disease risk by up to 20% per allele[51,52]. Next generation sequencing is now used to study low-frequency and rare variants that may potentially explain some of the missing heritabilities; however it is likely that studies designed to test for gene-environment interactions and gene-gene interactions may hold the answer. There were attempts to develop genetic profiles using the results from GWAS studies, but these have very limited value in personalised risk prediction as the genotype-phenotype effect sizes are very small. In the few studies that have evaluated the ability of a panel of genetic markers to discriminate CHD cases, the area under the receiver operating characteristic curve has been small indicating that conventional risk factors and family history are better at predicting risk and the incremental advantage of adding genetic markers is negligible. A few studies have attempted reclassification based on incorporation of SNPs from GWAS of CAD, lipids, etc.[52-58], and while they showed some improvement in net reclassification, the interpretation of these are still controversial and not translatable into general use[59]. Many companies are providing direct-to-consumer genetic tests that provide a “genetic risk profile” for an individual using risk alleles of small-to-moderate effects despite the clinical utility of genetic screening not being established. None of the major healthcare providers in Europe and USA have adopted these tests for CHD risk prediction, and the FDA has advised that direct-to-consumer genetic tests should be considered to be medical devices requiring FDA approval for commercial use. The future application of genetic screening will be in identifying risk groups early in life to direct targeted preventive measures and potentially pharmacogenetic tests to identify those at higher risk for adverse events. While technology is not a barrier to achieving this, the discovery, evaluation and deployment of these tests will require the same standards as non-genetic tests[60].

Footnotes

Peer reviewer: Boris Z Simkhovich, MD, PhD, The Heart Institute, Good Samaritan Hospital, 1225 Wilshire Boulevard, Los Angeles, CA 90017, United States

Supported by A Wellcome Trust Capacity Strengthening Strategic Award to the Public Health Foundation of India and a consortium of UK universities (to Jeemon P); Research grants from National Heart Lung and Blood Institute, United States of America (HHSN286200900026C) and National Institute of Health, United States of America (1D43HD065249) (to Prabhakaran D)

S- Editor Tian L L- Editor O’Neill M E- Editor Zheng XM

References

  • 1.World Health Organization. The World Health Report, 2002: reducing risks, promoting healthy life. Geneva, 2002. doi: 10.1080/1357628031000116808. [DOI] [PubMed] [Google Scholar]
  • 2.Ezzati M, Lopez AD, Rodgers A, Vander Hoorn S, Murray CJ. Selected major risk factors and global and regional burden of disease. Lancet. 2002;360:1347–1360. doi: 10.1016/S0140-6736(02)11403-6. [DOI] [PubMed] [Google Scholar]
  • 3.Unal B, Critchley JA, Capewell S. Explaining the decline in coronary heart disease mortality in England and Wales between 1981 and 2000. Circulation. 2004;109:1101–1107. doi: 10.1161/01.CIR.0000118498.35499.B2. [DOI] [PubMed] [Google Scholar]
  • 4.Ford ES, Capewell S. Coronary heart disease mortality among young adults in the U.S. from 1980 through 2002: concealed leveling of mortality rates. J Am Coll Cardiol. 2007;50:2128–2132. doi: 10.1016/j.jacc.2007.05.056. [DOI] [PubMed] [Google Scholar]
  • 5.Peeters A, Nusselder WJ, Stevenson C, Boyko EJ, Moon L, Tonkin A. Age-specific trends in cardiovascular mortality rates in the Netherlands between 1980 and 2009. Eur J Epidemiol. 2011;26:369–373. doi: 10.1007/s10654-011-9546-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Ford ES, Capewell S. Proportion of the decline in cardiovascular mortality disease due to prevention versus treatment: public health versus clinical care. Annu Rev Public Health. 2011;32:5–22. doi: 10.1146/annurev-publhealth-031210-101211. [DOI] [PubMed] [Google Scholar]
  • 7.Unal B, Critchley JA, Fidan D, Capewell S. Life-years gained from modern cardiological treatments and population risk factor changes in England and Wales, 1981-2000. Am J Public Health. 2005;95:103–108. doi: 10.2105/AJPH.2003.029579. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Kabir Z, Bennett K, Shelley E, Unal B, Critchley J, Feely J, Capewell S. Life-years-gained from population risk factor changes and modern cardiology treatments in Ireland. Eur J Public Health. 2007;17:193–198. doi: 10.1093/eurpub/ckl090. [DOI] [PubMed] [Google Scholar]
  • 9.Kahn R, Robertson RM, Smith R, Eddy D. The impact of prevention on reducing the burden of cardiovascular disease. Circulation. 2008;118:576–585. doi: 10.1161/CIRCULATIONAHA.108.190186. [DOI] [PubMed] [Google Scholar]
  • 10.Cohen JC, Boerwinkle E, Mosley TH, Hobbs HH. Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N Engl J Med. 2006;354:1264–1272. doi: 10.1056/NEJMoa054013. [DOI] [PubMed] [Google Scholar]
  • 11.Lander ES. The new genomics: global views of biology. Science. 1996;274:536–539. doi: 10.1126/science.274.5287.536. [DOI] [PubMed] [Google Scholar]
  • 12.McCarthy MI, Abecasis GR, Cardon LR, Goldstein DB, Little J, Ioannidis JP, Hirschhorn JN. Genome-wide association studies for complex traits: consensus, uncertainty and challenges. Nat Rev Genet. 2008;9:356–369. doi: 10.1038/nrg2344. [DOI] [PubMed] [Google Scholar]
  • 13.Ku CS, Loy EY, Pawitan Y, Chia KS. The pursuit of genome-wide association studies: where are we now? J Hum Genet. 2010;55:195–206. doi: 10.1038/jhg.2010.19. [DOI] [PubMed] [Google Scholar]
  • 14.Pe'er I, Yelensky R, Altshuler D, Daly MJ. Estimation of the multiple testing burden for genomewide association studies of nearly all common variants. Genet Epidemiol. 2008;32:381–385. doi: 10.1002/gepi.20303. [DOI] [PubMed] [Google Scholar]
  • 15.McPherson R, Pertsemlidis A, Kavaslar N, Stewart A, Roberts R, Cox DR, Hinds DA, Pennacchio LA, Tybjaerg-Hansen A, Folsom AR, et al. A common allele on chromosome 9 associated with coronary heart disease. Science. 2007;316:1488–1491. doi: 10.1126/science.1142447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Helgadottir A, Thorleifsson G, Manolescu A, Gretarsdottir S, Blondal T, Jonasdottir A, Jonasdottir A, Sigurdsson A, Baker A, Palsson A, et al. A common variant on chromosome 9p21 affects the risk of myocardial infarction. Science. 2007;316:1491–1493. doi: 10.1126/science.1142842. [DOI] [PubMed] [Google Scholar]
  • 17.Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature. 2007;447:661–678. doi: 10.1038/nature05911. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Samani NJ, Erdmann J, Hall AS, Hengstenberg C, Mangino M, Mayer B, Dixon RJ, Meitinger T, Braund P, Wichmann HE, et al. Genomewide association analysis of coronary artery disease. N Engl J Med. 2007;357:443–453. doi: 10.1056/NEJMoa072366. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Schunkert H, Götz A, Braund P, McGinnis R, Tregouet DA, Mangino M, Linsel-Nitschke P, Cambien F, Hengstenberg C, Stark K, et al. Repeated replication and a prospective meta-analysis of the association between chromosome 9p21.3 and coronary artery disease. Circulation. 2008;117:1675–1684. doi: 10.1161/CIRCULATIONAHA.107.730614. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Willer CJ, Sanna S, Jackson AU, Scuteri A, Bonnycastle LL, Clarke R, Heath SC, Timpson NJ, Najjar SS, Stringham HM, et al. Newly identified loci that influence lipid concentrations and risk of coronary artery disease. Nat Genet. 2008;40:161–169. doi: 10.1038/ng.76. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Kathiresan S, Voight BF, Purcell S, Musunuru K, Ardissino D, Mannucci PM, Anand S, Engert JC, Samani NJ, Schunkert H, et al. Genome-wide association of early-onset myocardial infarction with single nucleotide polymorphisms and copy number variants. Nat Genet. 2009;41:334–341. doi: 10.1038/ng.327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Trégouët DA, König IR, Erdmann J, Munteanu A, Braund PS, Hall AS, Grosshennig A, Linsel-Nitschke P, Perret C, DeSuremain M, et al. Genome-wide haplotype association study identifies the SLC22A3-LPAL2-LPA gene cluster as a risk locus for coronary artery disease. Nat Genet. 2009;41:283–285. doi: 10.1038/ng.314. [DOI] [PubMed] [Google Scholar]
  • 23.Erdmann J, Grosshennig A, Braund PS, König IR, Hengstenberg C, Hall AS, Linsel-Nitschke P, Kathiresan S, Wright B, Trégouët DA, et al. New susceptibility locus for coronary artery disease on chromosome 3q22.3. Nat Genet. 2009;41:280–282. doi: 10.1038/ng.307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Elliott P, Chambers JC, Zhang W, Clarke R, Hopewell JC, Peden JF, Erdmann J, Braund P, Engert JC, Bennett D, et al. Genetic Loci associated with C-reactive protein levels and risk of coronary heart disease. JAMA. 2009;302:37–48. doi: 10.1001/jama.2009.954. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Karvanen J, Silander K, Kee F, Tiret L, Salomaa V, Kuulasmaa K, Wiklund PG, Virtamo J, Saarela O, Perret C, et al. The impact of newly identified loci on coronary heart disease, stroke and total mortality in the MORGAM prospective cohorts. Genet Epidemiol. 2009;33:237–246. doi: 10.1002/gepi.20374. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Ridker PM, Paré G, Parker AN, Zee RY, Miletich JP, Chasman DI. Polymorphism in the CETP gene region, HDL cholesterol, and risk of future myocardial infarction: Genomewide analysis among 18 245 initially healthy women from the Women's Genome Health Study. Circ Cardiovasc Genet. 2009;2:26–33. doi: 10.1161/CIRCGENETICS.108.817304. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Aulchenko YS, Ripatti S, Lindqvist I, Boomsma D, Heid IM, Pramstaller PP, Penninx BW, Janssens AC, Wilson JF, Spector T, et al. Loci influencing lipid levels and coronary heart disease risk in 16 European population cohorts. Nat Genet. 2009;41:47–55. doi: 10.1038/ng.269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Teslovich TM, Musunuru K, Smith AV, Edmondson AC, Stylianou IM, Koseki M, Pirruccello JP, Ripatti S, Chasman DI, Willer CJ, et al. Biological, clinical and population relevance of 95 loci for blood lipids. Nature. 2010;466:707–713. doi: 10.1038/nature09270. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Kathiresan S, Melander O, Guiducci C, Surti A, Burtt NP, Rieder MJ, Cooper GM, Roos C, Voight BF, Havulinna AS, et al. Six new loci associated with blood low-density lipoprotein cholesterol, high-density lipoprotein cholesterol or triglycerides in humans. Nat Genet. 2008;40:189–197. doi: 10.1038/ng.75. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Kathiresan S, Willer CJ, Peloso GM, Demissie S, Musunuru K, Schadt EE, Kaplan L, Bennett D, Li Y, Tanaka T, et al. Common variants at 30 loci contribute to polygenic dyslipidemia. Nat Genet. 2009;41:56–65. doi: 10.1038/ng.291. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Chasman DI, Paré G, Mora S, Hopewell JC, Peloso G, Clarke R, Cupples LA, Hamsten A, Kathiresan S, Mälarstig A, et al. Forty-three loci associated with plasma lipoprotein size, concentration, and cholesterol content in genome-wide analysis. PLoS Genet. 2009;5:e1000730. doi: 10.1371/journal.pgen.1000730. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Chasman DI, Paré G, Zee RY, Parker AN, Cook NR, Buring JE, Kwiatkowski DJ, Rose LM, Smith JD, Williams PT, et al. Genetic loci associated with plasma concentration of low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, triglycerides, apolipoprotein A1, and Apolipoprotein B among 6382 white women in genome-wide analysis with replication. Circ Cardiovasc Genet. 2008;1:21–30. doi: 10.1161/CIRCGENETICS.108.773168. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Heid IM, Boes E, Müller M, Kollerits B, Lamina C, Coassin S, Gieger C, Döring A, Klopp N, Frikke-Schmidt R, et al. Genome-wide association analysis of high-density lipoprotein cholesterol in the population-based KORA study sheds new light on intergenic regions. Circ Cardiovasc Genet. 2008;1:10–20. doi: 10.1161/CIRCGENETICS.108.776708. [DOI] [PubMed] [Google Scholar]
  • 34.Wallace C, Newhouse SJ, Braund P, Zhang F, Tobin M, Falchi M, Ahmadi K, Dobson RJ, Marçano AC, Hajat C, et al. Genome-wide association study identifies genes for biomarkers of cardiovascular disease: serum urate and dyslipidemia. Am J Hum Genet. 2008;82:139–149. doi: 10.1016/j.ajhg.2007.11.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Kooner JS, Chambers JC, Aguilar-Salinas CA, Hinds DA, Hyde CL, Warnes GR, Gómez Pérez FJ, Frazer KA, Elliott P, Scott J, et al. Genome-wide scan identifies variation in MLXIPL associated with plasma triglycerides. Nat Genet. 2008;40:149–151. doi: 10.1038/ng.2007.61. [DOI] [PubMed] [Google Scholar]
  • 36.Talmud PJ, Drenos F, Shah S, Shah T, Palmen J, Verzilli C, Gaunt TR, Pallas J, Lovering R, Li K, et al. Gene-centric association signals for lipids and apolipoproteins identified via the HumanCVD BeadChip. Am J Hum Genet. 2009;85:628–642. doi: 10.1016/j.ajhg.2009.10.014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Kamatani Y, Matsuda K, Okada Y, Kubo M, Hosono N, Daigo Y, Nakamura Y, Kamatani N. Genome-wide association study of hematological and biochemical traits in a Japanese population. Nat Genet. 2010;42:210–215. doi: 10.1038/ng.531. [DOI] [PubMed] [Google Scholar]
  • 38.Saxena R, Voight BF, Lyssenko V, Burtt NP, de Bakker PI, Chen H, Roix JJ, Kathiresan S, Hirschhorn JN, Daly MJ, et al. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science. 2007;316:1331–1336. doi: 10.1126/science.1142358. [DOI] [PubMed] [Google Scholar]
  • 39.Hiura Y, Shen CS, Kokubo Y, Okamura T, Morisaki T, Tomoike H, Yoshida T, Sakamoto H, Goto Y, Nonogi H, et al. Identification of genetic markers associated with high-density lipoprotein-cholesterol by genome-wide screening in a Japanese population: the Suita study. Circ J. 2009;73:1119–1126. doi: 10.1253/circj.cj-08-1101. [DOI] [PubMed] [Google Scholar]
  • 40.Sandhu MS, Waterworth DM, Debenham SL, Wheeler E, Papadakis K, Zhao JH, Song K, Yuan X, Johnson T, Ashford S, et al. LDL-cholesterol concentrations: a genome-wide association study. Lancet. 2008;371:483–491. doi: 10.1016/S0140-6736(08)60208-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Levy D, Larson MG, Benjamin EJ, Newton-Cheh C, Wang TJ, Hwang SJ, Vasan RS, Mitchell GF. Framingham Heart Study 100K Project: genome-wide associations for blood pressure and arterial stiffness. BMC Med Genet. 2007;8 Suppl 1:S3. doi: 10.1186/1471-2350-8-S1-S3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Newton-Cheh C, Johnson T, Gateva V, Tobin MD, Bochud M, Coin L, Najjar SS, Zhao JH, Heath SC, Eyheramendy S, et al. Genome-wide association study identifies eight loci associated with blood pressure. Nat Genet. 2009;41:666–676. doi: 10.1038/ng.361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.Levy D, Ehret GB, Rice K, Verwoert GC, Launer LJ, Dehghan A, Glazer NL, Morrison AC, Johnson AD, Aspelund T, et al. Genome-wide association study of blood pressure and hypertension. Nat Genet. 2009;41:677–687. doi: 10.1038/ng.384. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.Adeyemo A, Gerry N, Chen G, Herbert A, Doumatey A, Huang H, Zhou J, Lashley K, Chen Y, Christman M, et al. A genome-wide association study of hypertension and blood pressure in African Americans. PLoS Genet. 2009;5:e1000564. doi: 10.1371/journal.pgen.1000564. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.Kato N, Miyata T, Tabara Y, Katsuya T, Yanai K, Hanada H, Kamide K, Nakura J, Kohara K, Takeuchi F, et al. High-density association study and nomination of susceptibility genes for hypertension in the Japanese National Project. Hum Mol Genet. 2008;17:617–627. doi: 10.1093/hmg/ddm335. [DOI] [PubMed] [Google Scholar]
  • 46.Yang HC, Liang YJ, Wu YL, Chung CM, Chiang KM, Ho HY, Ting CT, Lin TH, Sheu SH, Tsai WC, et al. Genome-wide association study of young-onset hypertension in the Han Chinese population of Taiwan. PLoS One. 2009;4:e5459. doi: 10.1371/journal.pone.0005459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47.Wang Y, O'Connell JR, McArdle PF, Wade JB, Dorff SE, Shah SJ, Shi X, Pan L, Rampersaud E, Shen H, et al. From the Cover: Whole-genome association study identifies STK39 as a hypertension susceptibility gene. Proc Natl Acad Sci U S A. 2009;106:226–231. doi: 10.1073/pnas.0808358106. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48.Org E, Eyheramendy S, Juhanson P, Gieger C, Lichtner P, Klopp N, Veldre G, Döring A, Viigimaa M, Sõber S, et al. Genome-wide scan identifies CDH13 as a novel susceptibility locus contributing to blood pressure determination in two European populations. Hum Mol Genet. 2009;18:2288–2296. doi: 10.1093/hmg/ddp135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49.Cho YS, Go MJ, Kim YJ, Heo JY, Oh JH, Ban HJ, Yoon D, Lee MH, Kim DJ, Park M, et al. A large-scale genome-wide association study of Asian populations uncovers genetic factors influencing eight quantitative traits. Nat Genet. 2009;41:527–534. doi: 10.1038/ng.357. [DOI] [PubMed] [Google Scholar]
  • 50.Padmanabhan S, Melander O, Johnson T, Di Blasio AM, Lee WK, Gentilini D, Hastie CE, Menni C, Monti MC, Delles C, et al. Genome-wide association study of blood pressure extremes identifies variant near UMOD associated with hypertension. PLoS Genet. 2010;6:e1001177. doi: 10.1371/journal.pgen.1001177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51.Ioannidis JP. Prediction of cardiovascular disease outcomes and established cardiovascular risk factors by genome-wide association markers. Circ Cardiovasc Genet. 2009;2:7–15. doi: 10.1161/CIRCGENETICS.108.833392. [DOI] [PubMed] [Google Scholar]
  • 52.Morrison AC, Bare LA, Chambless LE, Ellis SG, Malloy M, Kane JP, Pankow JS, Devlin JJ, Willerson JT, Boerwinkle E. Prediction of coronary heart disease risk using a genetic risk score: the Atherosclerosis Risk in Communities Study. Am J Epidemiol. 2007;166:28–35. doi: 10.1093/aje/kwm060. [DOI] [PubMed] [Google Scholar]
  • 53.Paynter NP, Chasman DI, Buring JE, Shiffman D, Cook NR, Ridker PM. Cardiovascular disease risk prediction with and without knowledge of genetic variation at chromosome 9p21.3. Ann Intern Med. 2009;150:65–72. doi: 10.7326/0003-4819-150-2-200901200-00003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54.Kathiresan S, Melander O, Anevski D, Guiducci C, Burtt NP, Roos C, Hirschhorn JN, Berglund G, Hedblad B, Groop L, et al. Polymorphisms associated with cholesterol and risk of cardiovascular events. N Engl J Med. 2008;358:1240–1249. doi: 10.1056/NEJMoa0706728. [DOI] [PubMed] [Google Scholar]
  • 55.Talmud PJ, Cooper JA, Palmen J, Lovering R, Drenos F, Hingorani AD, Humphries SE. Chromosome 9p21.3 coronary heart disease locus genotype and prospective risk of CHD in healthy middle-aged men. Clin Chem. 2008;54:467–474. doi: 10.1373/clinchem.2007.095489. [DOI] [PubMed] [Google Scholar]
  • 56.Paynter NP, Chasman DI, Paré G, Buring JE, Cook NR, Miletich JP, Ridker PM. Association between a literature-based genetic risk score and cardiovascular events in women. JAMA. 2010;303:631–637. doi: 10.1001/jama.2010.119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 57.Rosenberg S, Elashoff MR, Beineke P, Daniels SE, Wingrove JA, Tingley WG, Sager PT, Sehnert AJ, Yau M, Kraus WE, et al. Multicenter validation of the diagnostic accuracy of a blood-based gene expression test for assessing obstructive coronary artery disease in nondiabetic patients. Ann Intern Med. 2010;153:425–434. doi: 10.7326/0003-4819-153-7-201010050-00005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 58.Ripatti S, Tikkanen E, Orho-Melander M, Havulinna AS, Silander K, Sharma A, Guiducci C, Perola M, Jula A, Sinisalo J, et al. A multilocus genetic risk score for coronary heart disease: case-control and prospective cohort analyses. Lancet. 2010;376:1393–1400. doi: 10.1016/S0140-6736(10)61267-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 59.Pepe MS, Feng Z, Gu JW. Comments on 'Evaluating the added predictive ability of a new marker: From area under the ROC curve to reclassification and beyond' by M. J. Pencina et al., Statistics in Medicine (DOI: 10.1002/sim.2929) Stat Med. 2008;27:173–181. doi: 10.1002/sim.2991. [DOI] [PubMed] [Google Scholar]
  • 60.Hlatky MA, Greenland P, Arnett DK, Ballantyne CM, Criqui MH, Elkind MS, Go AS, Harrell FE, Hong Y, Howard BV, et al. Criteria for evaluation of novel markers of cardiovascular risk: a scientific statement from the American Heart Association. Circulation. 2009;119:2408–2416. doi: 10.1161/CIRCULATIONAHA.109.192278. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from World Journal of Cardiology are provided here courtesy of Baishideng Publishing Group Inc

RESOURCES