Abstract
Rutberg, Blanka (Karolinska Institutet, Stockholm, Sweden), and Lars Rutberg. Bacteriophage-induced functions in Escherichia coli K(λ) infected with rII mutants of bacteriophage T4. J. Bacteriol. 91:76–80. 1966.—When Escherichia coli K(λ) was infected with rII mutants of phage T4, deoxycytidine triphosphatase, one of the phage-induced early enzymes, was produced at initially the same rate as in r+-infected cells. Deoxyribonuclease activity was one-third to one-half of that of r+-infected cells. This lower deoxyribonuclease activity was observed also in other hosts or when infection was made with rI or rIII mutants. Presence of chloramphenicol did not allow a continued synthesis of phage deoxyribonucleic acid in rII-infected K(λ). No phage lysozyme was detected nor was any antiphage serum-blocking antigen found in rII-infected K(λ). It is suggested that the rII gene is of significance for the expression of phage-induced late functions in the host K(λ).
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- AMES B. N., DUBIN D. T. The role of polyamines in the neutralization of bacteriophage deoxyribonucleic acid. J Biol Chem. 1960 Mar;235:769–775. [PubMed] [Google Scholar]
- Appleyard R K. Segregation of New Lysogenic Types during Growth of a Doubly Lysogenic Strain Derived from Escherichia Coli K12. Genetics. 1954 Jul;39(4):440–452. doi: 10.1093/genetics/39.4.440. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BURTON K. A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem J. 1956 Feb;62(2):315–323. doi: 10.1042/bj0620315. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DE MARS R. I. The production of phage-related materials when bacteriophage development in interrupted by proflavine. Virology. 1955 May;1(1):83–99. doi: 10.1016/0042-6822(55)90007-6. [DOI] [PubMed] [Google Scholar]
- EDGAR R. S. Mapping experiments with rII and b mutants of bacteriophage T4D. Virology. 1958 Aug;6(1):215–225. doi: 10.1016/0042-6822(58)90070-9. [DOI] [PubMed] [Google Scholar]
- FRASER D., JERREL E. A. The amino acid composition of T3 bacteriophage. J Biol Chem. 1953 Nov;205(1):291–295. [PubMed] [Google Scholar]
- GAREN A. Physiological effects of rII mutations in bacteriophage T4. Virology. 1961 Jun;14:151–163. doi: 10.1016/0042-6822(61)90190-8. [DOI] [PubMed] [Google Scholar]
- KOERNER J. F., SMITH M. S., BUCHANAN J. M. Deoxycytidine triphosphatase, an enzyme induced by bacteriophage infection. J Biol Chem. 1960 Sep;235:2691–2697. [PubMed] [Google Scholar]
- NOMURA M. DNA synthesized in Escherichia coli K12 (lambda) after infection with an rII mutant of bacteriophage T4. Virology. 1961 Jun;14:164–166. doi: 10.1016/0042-6822(61)90191-x. [DOI] [PubMed] [Google Scholar]
- PARDEE A. B., WILLIAMS I. Enzymatic activity and bacteriophage infection. III. Increase of desoxyribonuclease. Ann Inst Pasteur (Paris) 1953 Jan;84(1):147–156. [PubMed] [Google Scholar]
- PUCK T. T., LEE H. H. Mechanism of cell wall penetration by viruses. II. Demonstration of cyclic permeability change accompanying virus infection of Escherichia coli B cells. J Exp Med. 1955 Feb 1;101(2):151–175. doi: 10.1084/jem.101.2.151. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SEKIGUCHI M., COHEN S. S. THE SYNTHESIS OF MESSENGER RNA WITHOUT PROTEIN SYNTHESIS. II. SYNTHESIS OF PHAGE-INDUCED RNA AND SEQUENTIAL ENZYME PRODUCTION. J Mol Biol. 1964 May;8:638–659. doi: 10.1016/s0022-2836(64)80114-5. [DOI] [PubMed] [Google Scholar]
- STERN J. L., SEKIGUCHI M., BARNER H. D., COHEN S. S. THE SYNTHESIS OF MESSENGER RNA WITHOUT PROTEIN SYNTHESIS. I. STUDIES WITH THYMINELESS STRAINS OF ESCHERICHIA COLI. J Mol Biol. 1964 May;8:629–637. doi: 10.1016/s0022-2836(64)80113-3. [DOI] [PubMed] [Google Scholar]
- STONE A. B., BURTON K. Studies on the deoxyribonucleases of bacteriophage-infected Escherichia coli. Biochem J. 1962 Dec;85:600–606. doi: 10.1042/bj0850600. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WHITFIELD J. F., BAIRD K. M. Nucleic acid synthesis by a lysogenic strain of Escherichia coli infected with an rII mutant of coliphage T2. Can J Microbiol. 1959 Feb;5(1):17–24. doi: 10.1139/m59-003. [DOI] [PubMed] [Google Scholar]
- WIBERG J. S., DIRKSEN M. L., EPSTEIN R. H., LURIA S. E., BUCHANAN J. M. Early enzyme synthesis and its control in E. coli infected with some amber mutants of bacteriophage T4. Proc Natl Acad Sci U S A. 1962 Feb;48:293–302. doi: 10.1073/pnas.48.2.293. [DOI] [PMC free article] [PubMed] [Google Scholar]