Abstract
Thorne, Curtis B. (Fort Detrick, Frederick, Md.), and Harold B. Stull. Factors affecting transformation of Bacillus licheniformis. J. Bacteriol. 91:1012–1020. 1966.—Transformation systems involving two types of transformable mutants of Bacillus licheniformis 9945A were compared. Each system required its specific growth medium, but a single transformation medium could be used for both. Cells from a culture of optimal age were not competent, at least to any great extent, but they developed competence during incubation in a transformation medium. With each system, 3 to 5% of the recipient cells were transformed upon exposure to wild-type deoxyribonucleic acid (DNA) for 2 to 3 hr. When competent cells were exposed to DNA for 30 min, 1 to 2% of them were transformed. The data are interpreted to mean that cells were heterogeneous with respect to development of competence, and when properly grown cells were incubated in transformation medium some of them gained competence, whereas others lost it. If DNA was present during the entire period, the cells were transformed as they became competent and the transformants accumulated. However, during any short period of exposure to DNA, only those cells that were competent at the time were potential transformants. The high frequencies of transformation obtained in these studies made it feasible to prepare marked strains by transforming markers into recipient cells. These experiments demonstrated that the characteristics of the two transformation systems could not be attributed to specific nutritional markers. Presumably, each of the two series of highly transformable auxotrophic mutants also carried at least one other mutation that resulted in development of competence under the specific conditions.
Full text
PDF








Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anagnostopoulos C., Spizizen J. REQUIREMENTS FOR TRANSFORMATION IN BACILLUS SUBTILIS. J Bacteriol. 1961 May;81(5):741–746. doi: 10.1128/jb.81.5.741-746.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BURTON K. A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem J. 1956 Feb;62(2):315–323. doi: 10.1042/bj0620315. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GWINN D. D., THORNE C. B. TRANSFORMATION OF BACILLUS LICHENIFORMIS. J Bacteriol. 1964 Mar;87:519–526. doi: 10.1128/jb.87.3.519-526.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LEONARD C. G., MATTHEIS D. K., MATTHEIS M. J., HOUSEWRIGHT R. D. TRANSFORMATION TO PROTOTROPHY AND POLYGLUTAMIC ACID SYNTHESIS IN BACILLUS LICHENIFORMIS. J Bacteriol. 1964 Jul;88:220–225. doi: 10.1128/jb.88.1.220-225.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LEONARD C. G., MATTHEIS M. J. DIFFERENT TRANSFORMING CHARACTERISTICS OF COLONIAL VARIANTS FROM AUXOTROPHIC MUTANTS OF BACILLUS LICHENIFORMIS. J Bacteriol. 1965 Aug;90:558–559. doi: 10.1128/jb.90.2.558-559.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
- THORNE C. B., GOMEZ C. G., NOYES H. E., HOUSEWRIGHT R. D. Production of glutamyl polypeptide by Bacillus subtilis. J Bacteriol. 1954 Sep;68(3):307–315. doi: 10.1128/jb.68.3.307-315.1954. [DOI] [PMC free article] [PubMed] [Google Scholar]
- THORNE C. B. Transduction in Bacillus subtilis. J Bacteriol. 1962 Jan;83:106–111. doi: 10.1128/jb.83.1.106-111.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]