Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1966 Mar;91(3):1136–1139. doi: 10.1128/jb.91.3.1136-1139.1966

Properties of Two Marine Bacteriophages

Peter K Chen 1, Ronald V Citarella 1, Omar Salazar 1, Rita R Colwell 1
PMCID: PMC316006  PMID: 5929746

Abstract

Chen, Peter K. (Georgetown University, Washington, D.C.), Ronald V. Citarella, Omar Salazar, and Rita R. Colwell. Properties of two marine bacteriophages. J. Bacteriol. 91:1136–1139. 1966.—Various properties have been determined for two bacteriophages, NCMB 384 and 385, and their host, NCMB 397, a Cytophaga sp., isolated from the marine environment. The purified bacteriophages have been subjected to serological analysis, results of which indicate a high degree of relatedness. Purified, highly polymerized deoxyribonucleic acid (DNA) prepared from the host strain showed an overall base composition of 37 moles% guanine + cytosine (buoyant density of 1.696 g/cc). The bacteriophage DNA, in the native configuration, from NCMB 384 and 385 banded at 1.691 g/cc in a CsCl gradient and the denatured bacteriophage DNA demonstrated a bimodal peak. Stability tests of the bacteriophages in various buffers and diluents suggest a requirement for inorganic cations, most likely Na+ and Mg++, for retention of viability.

Full text

PDF
1136

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. CARLUCCI A. F., PRAMER D. An evaluation of factors affecting the survival of Escherichia coli in sea water. IV. Bacteriophages. Appl Microbiol. 1960 Jul;8:254–256. doi: 10.1128/am.8.4.254-256.1960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. HERRIOTT R. M., BARLOW J. L. Preparation, purification, and properties of E. coli virus T2. J Gen Physiol. 1952 May;36(1):17–28. doi: 10.1085/jgp.36.1.17. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. MACLEOD R. A., ONOFREY E., NORRIS M. E. Nutrition and metabolism of marine bacteria. I. Survey of nutritional requirements. J Bacteriol. 1954 Dec;68(6):680–686. doi: 10.1128/jb.68.6.680-686.1954. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. MARMUR J., DOTY P. Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol. 1962 Jul;5:109–118. doi: 10.1016/s0022-2836(62)80066-7. [DOI] [PubMed] [Google Scholar]
  5. Meselson M., Stahl F. W., Vinograd J. EQUILIBRIUM SEDIMENTATION OF MACROMOLECULES IN DENSITY GRADIENTS. Proc Natl Acad Sci U S A. 1957 Jul 15;43(7):581–588. doi: 10.1073/pnas.43.7.581. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. SCHILDKRAUT C. L., MARMUR J., DOTY P. Determination of the base composition of deoxyribonucleic acid from its buoyant density in CsCl. J Mol Biol. 1962 Jun;4:430–443. doi: 10.1016/s0022-2836(62)80100-4. [DOI] [PubMed] [Google Scholar]
  7. Spencer R. INDIGENOUS MARINE BACTERIOPHAGES. J Bacteriol. 1960 Apr;79(4):614–614. doi: 10.1128/jb.79.4.614-614.1960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. TYLER M. E., BIELLING M. C., PRATT D. B. Mineral requirements and other characters of selected marine bacteria. J Gen Microbiol. 1960 Aug;23:153–161. doi: 10.1099/00221287-23-1-153. [DOI] [PubMed] [Google Scholar]
  9. Valentine A. F., Chen P. K., Colwell R. R., Chapman G. B. Structure of a marine bacteriophage as revealed by the negative-staining technique. J Bacteriol. 1966 Feb;91(2):819–822. doi: 10.1128/jb.91.2.819-822.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. YAPHE W. The use of agarase from Pseudomonas atlantica in the identification of agar in marine algae (Rhodophyceae). Can J Microbiol. 1957 Dec;3(7):987–993. doi: 10.1139/m57-109. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES