Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1966 Apr;91(4):1477–1488. doi: 10.1128/jb.91.4.1477-1488.1966

Properties and Regulation of the β-d-Galactosidase in Shigella dysenteriae and in Escherichia coli-Shigella dysenteriae Hybrids

S Sarkar a,1
PMCID: PMC316066  PMID: 5326112

Abstract

Sarkar, S. (Massachusetts Institute of Technology, Cambridge). Properties and regulation of the β-d-galactosidase in Shigella dysenteriae and in Escherichia coli-Shigella dysenteriae hybrids. J. Bacteriol. 91:1477–1488. 1966.—Shigella dysenteriae strain 60 has a β-d-galactosidase related to that of Escherichia coli but more heat-sensitive and with a turnover number about 10 times lower. Hybridization by transduction produces strains with enzymes of intermediate properties by recombination within the z gene. Both E. coli and S. dysenteriae have a regulatory i+ gene. Recombination between i mutants of the two organisms leads to restoration of the i+ genotype. In S. dysenteriae 60, most of the i mutants are subject to genetic suppression by suppressor mutations at unlinked loci. The effect of these suppressors on the products of the suppressed i genes is discussed.

Full text

PDF
1477

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. COHN M. Contributions of studies on the beta-galactosidase of Escherichia coli to our understanding of enzyme synthesis. Bacteriol Rev. 1957 Sep;21(3):140–168. doi: 10.1128/br.21.3.140-168.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. COHN M., LENNOX E., SPIEGELMAN S. On the behavior of the E. coli Pz-"beta-galactoside system" introduced into Shigella dysenteriae. Biochim Biophys Acta. 1960 Apr 8;39:255–266. doi: 10.1016/0006-3002(60)90162-1. [DOI] [PubMed] [Google Scholar]
  3. COOK A., LEDERBERG J. Recombination studies of lactose nonfermenting mutants of Escherichia coli K-12. Genetics. 1962 Oct;47:1335–1353. doi: 10.1093/genetics/47.10.1335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. FRANKLIN N. C., HOWARD B. D. DOUBLE HETEROGENOTES FORMED BY P1-MEDIATED TRANSDUCTION OF LAC GENES IN ESCHERICHIA COLI. Virology. 1965 Jan;25:98–110. doi: 10.1016/0042-6822(65)90257-6. [DOI] [PubMed] [Google Scholar]
  5. FRANKLIN N. C., LURIA S. E. Transduction by bacteriophage P-1 and the properties of the lac genetic region in E. coli and S. dysenteriae. Virology. 1961 Nov;15:299–311. doi: 10.1016/0042-6822(61)90362-2. [DOI] [PubMed] [Google Scholar]
  6. HORIUCHI T., TOMIZAWA J. I., NOVICK A. Isolation and properties of bacteria capable of high rates of beta-galactosidase synthesis. Biochim Biophys Acta. 1962 Jan 22;55:152–163. doi: 10.1016/0006-3002(62)90941-1. [DOI] [PubMed] [Google Scholar]
  7. JACOB F., MONOD J. Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol. 1961 Jun;3:318–356. doi: 10.1016/s0022-2836(61)80072-7. [DOI] [PubMed] [Google Scholar]
  8. LENNOX E. S. Transduction of linked genetic characters of the host by bacteriophage P1. Virology. 1955 Jul;1(2):190–206. doi: 10.1016/0042-6822(55)90016-7. [DOI] [PubMed] [Google Scholar]
  9. LI K., BARKSDALE L., GARMISE L. Phenotypic alterations associated with the bacteriophage carrier state of Shigella dysenteriae. J Gen Microbiol. 1961 Mar;24:355–367. doi: 10.1099/00221287-24-3-355. [DOI] [PubMed] [Google Scholar]
  10. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  11. LURIA S. E., ADAMS J. N., TING R. C. Transduction of lactose-utilizing ability among strains of E. coli and S. dysenteriae and the properties of the transducing phage particles. Virology. 1960 Nov;12:348–390. doi: 10.1016/0042-6822(60)90161-6. [DOI] [PubMed] [Google Scholar]
  12. LURIA S. E., BURROUS J. W. Hybridization between Escherichia coli and Shigella. J Bacteriol. 1957 Oct;74(4):461–476. doi: 10.1128/jb.74.4.461-476.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. MARTIN R. G., AMES B. N. A method for determining the sedimentation behavior of enzymes: application to protein mixtures. J Biol Chem. 1961 May;236:1372–1379. [PubMed] [Google Scholar]
  14. RICKENBERG H. V. Occurrence of beta-galactosidase in the genus Shigella. J Bacteriol. 1960 Sep;80:421–422. doi: 10.1128/jb.80.3.421-422.1960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. ROTMAN B. Measurement of activity of single molecules of beta-D-galactosidase. Proc Natl Acad Sci U S A. 1961 Dec 15;47:1981–1991. doi: 10.1073/pnas.47.12.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. ROTMAN B., ZDERIC J. A., EDELSTEIN M. Fluorogenic substrates for beta-D-galactosidases and phosphatases derived from flurescein (3,6-dihydroxyfluoran) and its monomethylether. Proc Natl Acad Sci U S A. 1963 Jul;50:1–6. doi: 10.1073/pnas.50.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. SADLER J. R., NOVICK A. THE PROPERTIES OF REPRESSOR AND THE KINETICS OF ITS ACTION. J Mol Biol. 1965 Jun;12:305–327. doi: 10.1016/s0022-2836(65)80255-8. [DOI] [PubMed] [Google Scholar]
  18. SARKAR S., LURIA S. E. Regulation of biosynthesis of a heat-sensititive beta-D-galactosidase in Shigella dysenteriae. Biochim Biophys Acta. 1963 Mar 26;68:505–508. doi: 10.1016/0006-3002(63)90178-1. [DOI] [PubMed] [Google Scholar]
  19. YANOFSKY C., LAWRENCE P. S. Gene action. Annu Rev Microbiol. 1960;14:311–340. doi: 10.1146/annurev.mi.14.100160.001523. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES