Abstract
Foster, J. W. (The University of Texas, Austin), and Richard H. Davis. A methane-dependent coccus, with notes on classification and nomenclature of obligate, methane-utilizing bacteria. J. Bacteriol. 91:1924–1931. 1966.—A new coccus-shaped bacterium capable of aerobic growth at the expense of methane or methanol in a mineral salts medium is described. The organism did not grow at the expense of any of the conventional substrates or homologous hydrocarbons tested. It is gram-negative, nonmotile, and thermotolerant. It grows well at 50 C, optimally at 37 C, but does not grow at 55 C. The cells are encapsulated and have a characteristic diplococcoid arrangement. Washed, “resting-cell” suspensions oxidized certain primary alcohols and short-chain alkanes, an example of “nongrowth oxidation.” Of the methane-C utilized, 86% was “fixed” in organic form; the remainder was oxidized to CO2. The guanine-cytosine content of the extracted deoxyribonucleic acid was 62.5%. Obligate methane-utilizing bacteria are considered as “one-carbon” organisms rather than hydrocarbon utilizers. The assimilation pathway in the obligate methane-methanol bacteria is different from that in the facultative methanol utilizers. Nomenclatural problems arising from the use of the prefix “Methano-” to denote both bacteria that oxidize methane and bacteria that produce methane are discussed. The obligate, one-carbon, methane-methanol bacteria are considered as “methyl” utilizers, and the prefix “Methylo-” is suggested as a solution to the problem of generic cognomens. “Methylococcus capsulatus” gen. n., sp. n. is the name proposed for the new methane coccus.
Full text
PDF![1924](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf63/316146/7b7cb651820e/jbacter00422-0292.png)
![1925](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf63/316146/c064c729ec33/jbacter00422-0293.png)
![1926](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf63/316146/29b6dc1d62c4/jbacter00422-0294.png)
![1927](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf63/316146/4476ea42d936/jbacter00422-0295.png)
![1928](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf63/316146/d78a94732c86/jbacter00422-0296.png)
![1929](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf63/316146/c181f2833d3e/jbacter00422-0297.png)
![1930](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf63/316146/3cc5f2ca0f98/jbacter00422-0298.png)
![1931](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf63/316146/7858220d6cb7/jbacter00422-0299.png)
Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- CATLIN B. W., CUNNINGHAM L. S. TRANSFORMING ACTIVITIES AND BASE COMPOSITION OF DEOXYRIBONUCLEATES FROM STRAINS OF MORAXELLA AND MIMA. J Gen Microbiol. 1964 Dec;37:353–367. doi: 10.1099/00221287-37-3-353. [DOI] [PubMed] [Google Scholar]
- CATLIN B. W. RECIPROCAL GENETIC TRANSFORMATION BETWEEN NEISSERIA CATARRHALIS AND MORAXELLA NONLIQUEFACIENS. J Gen Microbiol. 1964 Dec;37:369–379. doi: 10.1099/00221287-37-3-369. [DOI] [PubMed] [Google Scholar]
- Colwell R. R., Citarella R. V., Ryman I. Deoxyribonucleic acid base composition and Adansonian analysis of heterotrophic aerobic pseudomonads. J Bacteriol. 1965 Oct;90(4):1148–1149. doi: 10.1128/jb.90.4.1148-1149.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DWORKIN M., FOSTER J. W. Experiments with some microorganisms which utilize ethane and hydrogen. J Bacteriol. 1958 May;75(5):592–603. doi: 10.1128/jb.75.5.592-603.1958. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DWORKIN M., FOSTER J. W. Studies on Pseudomonas methanica (Söhngen) nov. comb. J Bacteriol. 1956 Nov;72(5):646–659. doi: 10.1128/jb.72.5.646-659.1956. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FOSTER J. W. Hydrocarbons as substrates for microorganisms. Antonie Van Leeuwenhoek. 1962;28:241–274. doi: 10.1007/BF02538739. [DOI] [PubMed] [Google Scholar]
- FUHS G. W. [Microbial catabolism of hydrocarbons]. Arch Mikrobiol. 1961;39:374–422. [PubMed] [Google Scholar]
- Gaughran E. R. THE THERMOPHILIC MICROORGANISMS. Bacteriol Rev. 1947 Sep;11(3):189–225. doi: 10.1128/br.11.3.189-225.1947. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HARRINGTON A. A., KALLIO R. E. Oxidation of methanol and formaldehyde by pseudomonas methanica. Can J Microbiol. 1960 Feb;6:1–7. doi: 10.1139/m60-001. [DOI] [PubMed] [Google Scholar]
- HARRIS J. O. Respiration studies of a Micrococcus capable of oxidizing hydrocarbons. Arch Biochem Biophys. 1957 Aug;70(2):457–463. doi: 10.1016/0003-9861(57)90134-0. [DOI] [PubMed] [Google Scholar]
- HIRSCH P., CONTI S. F. BIOLOGY OF BUDDING BACTERIA. II. GROWTH AND NUTRITION OF HYPHOMICROBIUM SPP. Arch Mikrobiol. 1964 Jun 26;48:358–367. doi: 10.1007/BF00405979. [DOI] [PubMed] [Google Scholar]
- JOHNSON P. A., QUAYLE J. R. MICROBIAL GROWTH ON C1 COMPOUNDS. SYNTHESIS OF CELL CONSTITUENTS BY METHANE- AND METHANOL-GROWN PSEUDOMONAS METHANICA. Biochem J. 1965 Jun;95:859–867. doi: 10.1042/bj0950859. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KANEDA T., ROXBURGH J. M. A methanol-utilizing Bacterium. I. Description and nutritional requirements. Can J Microbiol. 1959 Feb;5(1):87–98. doi: 10.1139/m59-011. [DOI] [PubMed] [Google Scholar]
- KANEDA T., ROXBURGH J. M. Serine as an intermediate in the assimilation of methanol by a Pseudomonas. Biochim Biophys Acta. 1959 May;33(1):106–110. doi: 10.1016/0006-3002(59)90503-7. [DOI] [PubMed] [Google Scholar]
- Kemp M. B., Quayle J. R. Incorporation of C1 units into allulose phosphate by methane-grown Pseudomonas methanica. Biochim Biophys Acta. 1965 Aug 24;107(1):174–176. doi: 10.1016/0304-4165(65)90415-0. [DOI] [PubMed] [Google Scholar]
- LARGE P. J., PEEL D., QUAYLE J. R. Microbial growth on C1 compounds. II. Synthesis of cell constituents by methanol- and formate-grown Pseudomonas AM 1, and methanol-grown Hyphomicrobium vulgare. Biochem J. 1961 Dec;81:470–480. doi: 10.1042/bj0810470. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LAW J. H., SLEPECKY R. A. Assay of poly-beta-hydroxybutyric acid. J Bacteriol. 1961 Jul;82:33–36. doi: 10.1128/jb.82.1.33-36.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LEADBETTER E. R., FOSTER J. W. Bacterial oxidation of gaseous alkanes. Arch Mikrobiol. 1960;35:92–104. doi: 10.1007/BF00425597. [DOI] [PubMed] [Google Scholar]
- Large P. J., Quayle J. R. Microbial growth on C(1) compounds. 5. Enzyme activities in extracts of Pseudomonas AM1. Biochem J. 1963 May;87(2):386–396. doi: 10.1042/bj0870386. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lukins H. B., Foster J. W. Utilization of hydrocarbons and hydrogen by mycobacteria. Z Allg Mikrobiol. 1963;3(4):251–264. doi: 10.1002/jobm.3630030403. [DOI] [PubMed] [Google Scholar]
- MARMUR J., FALKOW S., MANDEL M. NEW APPROACHES TO BACTERIAL TAXONOMY. Annu Rev Microbiol. 1963;17:329–372. doi: 10.1146/annurev.mi.17.100163.001553. [DOI] [PubMed] [Google Scholar]
- MURRAY G. E., TRUANT J. P. The morphology, cell structure, and taxonomic affinities of the Moraxella. J Bacteriol. 1954 Jan;67(1):13–22. doi: 10.1128/jb.67.1.13-22.1954. [DOI] [PMC free article] [PubMed] [Google Scholar]
- OOYAMA J., FOSTER J. W. BACTERIAL OXIDATION OF CYCLOPARAFFINIC HYDROCARBONS. Antonie Van Leeuwenhoek. 1965;31:45–65. doi: 10.1007/BF02045875. [DOI] [PubMed] [Google Scholar]
- PIECHAUD M. [Motility of the Moraxella]. Ann Inst Pasteur (Paris) 1963 Feb;104:291–297. [PubMed] [Google Scholar]
- QUAYLE J. R., KEECH D. B. Carbon assimilation by Pseudomonas oxalaticus (OX 1). 1. Formate and carbon dioxide utilization during growth on formate. Biochem J. 1959 Aug;72:623–630. doi: 10.1042/bj0720623. [DOI] [PMC free article] [PubMed] [Google Scholar]
- QUAYLE J. R., KEECH D. B. Carbon assimilation by Pseudomonas oxalaticus (OX 1). 2. Formate and carbon dioxide utilization by cell-free extracts of the organism grown on formate. Biochem J. 1959 Aug;72:631–637. doi: 10.1042/bj0720631. [DOI] [PMC free article] [PubMed] [Google Scholar]
- QUAYLE J. R. THE ASSIMILATION OF 1-C COMPOUNDS. J Gen Microbiol. 1963 Aug;32:163–166. doi: 10.1099/00221287-32-2-163. [DOI] [PubMed] [Google Scholar]
- SCHILDKRAUT C. L., MARMUR J., DOTY P. Determination of the base composition of deoxyribonucleic acid from its buoyant density in CsCl. J Mol Biol. 1962 Jun;4:430–443. doi: 10.1016/s0022-2836(62)80100-4. [DOI] [PubMed] [Google Scholar]
- STOCKS P. K., MCCLESKEY C. S. IDENTITY OF THE PINK-PIGMENTED METHANOL-OXIDIZING BACTERIA AS VIBRIO EXTORQUENS. J Bacteriol. 1964 Oct;88:1065–1070. doi: 10.1128/jb.88.4.1065-1070.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
- STOCKS P. K., MCCLESKEY C. S. MORPHOLOGY AND PHYSIOLOGY OF METHANOMONAS METHANOOXIDANS. J Bacteriol. 1964 Oct;88:1071–1077. doi: 10.1128/jb.88.4.1071-1077.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
- THOMPSON R. S., LEADBETTER E. R. On the isolation of dipicolinic acid fromhendospores of Sarcina ureae. Arch Mikrobiol. 1963;45:27–32. doi: 10.1007/BF00410294. [DOI] [PubMed] [Google Scholar]
- UPDEGRAFF D. M., HUCKABAY W. B. A rapid micro gas analysis system for carbon dioxide, oxygen, hydrocarbon gases, and hydrogen. Anal Biochem. 1963 Jan;5:28–36. doi: 10.1016/0003-2697(63)90054-x. [DOI] [PubMed] [Google Scholar]