Abstract
Marus, Adrienne (University of Cincinnati, Cincinnati, Ohio), and Emily J. Bell. Carbohydrate catabolism of Mima polymorpha. II. Abortive catabolism of glucose. J. Bacteriol. 91:2229–2236. 1966.—Mima polymorpha, unable to grow in the presence of glucose as a sole carbon and energy source, is able to obtain supplemental, utilizable energy from the partial catabolism of this substrate. Various enzymes of hexose catabolism have been assayed in this organism and in M. polymorpha M, a mutant obtained by ultraviolet irradiation. The parent strain contains a functional glucose dehydrogenase, glucose-6-phosphate dehydrogenase, diphosphofructoaldolase, and a 2-keto-3-deoxy-6-phosphogluconate aldolase, but is lacking in glucokinase, gluconokinase, 2-ketogluconokinase, and 6-phosphogluconate dehydrogenase. The enzymes present indicate partially functioning hexose diphosphate and Entner-Doudoroff pathways. The absence of kinases explains the inability of the strain to grow on glucose and an absence of 6-phosphogluconate dehydrogenase would indicate the absence of the complete pentose pathway. The mutant strain, M. polymorpha M, possesses, in addition to those enzymes produced by the wild type, both gluconokinase and 6-phosphogluconate dehydrogenase. The presence of the former explains the mutant's ability to grow on glucose, and the presence of the latter indicates a more complete pentose shunt. The supplemental energy obtained from partial glucose catabolism (to gluconic acid) may be obtained from a cytochrome-linked reaction of the glucose dehydrogenase.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BENTLEY R., SLECHTA L. Oxidation of mono- and disaccharides to aldonic acids by Pseudomonas species. J Bacteriol. 1960 Mar;79:346–355. doi: 10.1128/jb.79.3.346-355.1960. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bell E. J., Marus A. Carbohydrate catabolism of Mima polymorpha. I. Supplemental energy from glucose added to a growth medium. J Bacteriol. 1966 Jun;91(6):2223–2228. doi: 10.1128/jb.91.6.2223-2228.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ENGLESBERG E., WATSON J. A., HOFFEE P. A. The glucose effect and the relationship between glucose permease, acid phosphatase, and glucose resistance. Cold Spring Harb Symp Quant Biol. 1961;26:261–276. doi: 10.1101/sqb.1961.026.01.033. [DOI] [PubMed] [Google Scholar]
- Fraenkel D. G., Horecker B. L. Fructose-1, 6-diphosphatase and acid hexose phosphatase of Escherichia coli. J Bacteriol. 1965 Oct;90(4):837–842. doi: 10.1128/jb.90.4.837-842.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HAUGE J. G. Glucose dehydrogenation in bacteria: a comparative study. J Bacteriol. 1961 Oct;82:609–614. doi: 10.1128/jb.82.4.609-614.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HORECKER B. L., SMYRNIOTIS P. Z. Phosphogluconic acid dehydrogenase from yeast. J Biol Chem. 1951 Nov;193(1):371–381. [PubMed] [Google Scholar]
- KATZNELSON H. Hexose phosphate metabolism by Acetobacter melanogenum. Can J Microbiol. 1958 Feb;4(1):25–34. doi: 10.1139/m58-004. [DOI] [PubMed] [Google Scholar]
- KOVACHEVICH R., WOOD W. A. Carbohydrate metabolism by Pseudomonas fluorescens. IV. Purification and properties of 2-keto-3-deoxy-6-phosphogluconate aldolase. J Biol Chem. 1955 Apr;213(2):757–767. [PubMed] [Google Scholar]
- LERNER S. A., WU T. T., LIN E. C. EVOLUTION OF A CATABOLIC PATHWAY IN BACTERIA. Science. 1964 Dec 4;146(3649):1313–1315. doi: 10.1126/science.146.3649.1313. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Lee C. K., Dobrogosz W. J. Oxidative Metabolism in Pediococcus pentosaceus III. Glucose Dehydrogenase System. J Bacteriol. 1965 Sep;90(3):653–660. doi: 10.1128/jb.90.3.653-660.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
- NEIDHARDT F. C. Mutant of Aerobacter aerogenes lacking glucose repression. J Bacteriol. 1960 Oct;80:536–543. doi: 10.1128/jb.80.4.536-543.1960. [DOI] [PMC free article] [PubMed] [Google Scholar]
- NIEDERPRUEM D. J., DOUDOROFF M. COFACTOR-DEPENDENT ALDOSE DEHYDROGENASE OF RHODOPSEUDOMONAS SPHEROIDES. J Bacteriol. 1965 Mar;89:697–705. doi: 10.1128/jb.89.3.697-705.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rogosa M., Krichevsky M. I., Bishop F. S. Truncated Glycolytic System in Veillonella. J Bacteriol. 1965 Jul;90(1):164–171. doi: 10.1128/jb.90.1.164-171.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SEEGMILLER J. E., HORECKER B. L. The synthesis of glucose-6-phosphate and 6-phosphogluconate. J Biol Chem. 1951 Sep;192(1):175–180. [PubMed] [Google Scholar]
- TAYLOR W. H., JUNI E. Pathways for biosynthesis of a bacterial capsular polysaccharide. I. Carbohydrate metabolism and terminal oxidation mechanisms of a capsuleproducing coccus. J Bacteriol. 1961 May;81:694–703. doi: 10.1128/jb.81.5.694-703.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WOOD W. A., SCHWERDT R. F. Carbohydrate oxidation by Pseudomonas fluorescens. I. The mechanism of glucose and gluconate oxidation. J Biol Chem. 1953 Apr;201(2):501–511. [PubMed] [Google Scholar]
