Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1966 Jun;91(6):2281–2285. doi: 10.1128/jb.91.6.2281-2285.1966

Pyruvate-Carbon Dioxide Exchange Reaction of Desulfovibrio desulfuricans

Byungse Suh 1, J M Akagi 1
PMCID: PMC316207  PMID: 5943942

Abstract

Suh, Byungse (University of Kansas, Lawrence), and J. M. Akagi. Pyruvate-carbon dioxide exchange reaction of Desulfovibrio desulfuricans. J. Bacteriol. 91:2281–2285. 1966.—The pyruvate-CO2 exchange reaction, catalyzed by Desulfovibrio desulfuricans, required the presence of phosphate and coenzyme A. However, the requirement for phosphate disappeared when the concentration of coenzyme A was increased to a level of 3.8 × 10−3m. Passing crude extracts through a diethylaminoethyl-cellulose column and an Amberlite CG-50 ion-exchange column, to remove ferredoxin and cytochrome c3, resulted in a marked decrease in exchange activity; full activity was restored by the addition of ferredoxin or cytochrome c3. Fe++ or Co++ stimulated the exchange of CO2 into pyruvate.

Full text

PDF
2281

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BUCHANAN B. B., BACHOFEN R., ARNON D. I. ROLE OF FERREDOXIN IN THE REDUCTIVE ASSIMILATION OF CO2 AND ACETATE BY EXTRACTS OF THE PHOTOSYNTHETIC BACTERIUM, CHROMATIUM. Proc Natl Acad Sci U S A. 1964 Sep;52:839–847. doi: 10.1073/pnas.52.3.839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. GRAY C. T., GEST H. BIOLOGICAL FORMATION OF MOLECULAR HYDROGEN. Science. 1965 Apr 9;148(3667):186–192. doi: 10.1126/science.148.3667.186. [DOI] [PubMed] [Google Scholar]
  3. HORIO T., KAMEN M. D. Preparation and properties of three pure crystalline bacterial haem proteins. Biochim Biophys Acta. 1961 Apr 1;48:266–286. doi: 10.1016/0006-3002(61)90476-0. [DOI] [PubMed] [Google Scholar]
  4. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  5. MILLET J. Dégradation anaérobie du pyruvate par un extrait enzymatique de Desulfovibrio desulfuricans. C R Hebd Seances Acad Sci. 1954 Jan 18;238(3):408–411. [PubMed] [Google Scholar]
  6. MORTLOCK R. P., VALENTINE R. C., WOLFE R. S. Carbon dioxide activation in the pyruvate clastic system of Clostridium butyricum. J Biol Chem. 1959 Jul;234(7):1653–1656. [PubMed] [Google Scholar]
  7. NOVELLI G. D. The exchange of H14COOH with the carboxyl group of pyruvate by Clostridium butylicum and Micrococcus lactilyticus. Biochim Biophys Acta. 1955 Dec;18(4):594–596. doi: 10.1016/0006-3002(55)90170-0. [DOI] [PubMed] [Google Scholar]
  8. PECK H. D., Jr Symposium on metabolism of inorganic compounds. V. Comparative metabolism of inorganic sulfur compounds in microorganisms. Bacteriol Rev. 1962 Mar;26:67–94. doi: 10.1128/br.26.1.67-94.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. SADANA J. C. Pyruvate oxidation in Desulphovibrio desulphuricans. J Bacteriol. 1954 May;67(5):547–553. doi: 10.1128/jb.67.5.547-553.1954. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. STADTMAN E. R., NOVELLI G. D., LIPMANN F. Coenzyme A function in and acetyl transfer by the phosphotransacetylase system. J Biol Chem. 1951 Jul;191(1):365–376. [PubMed] [Google Scholar]
  11. Saunders G. F., Campbell L. L., Postgate J. R. Base composition of deoxyribonucleic acid of sulfate-reducing bacteria deduced from buoyant density measurements in cesium chloride. J Bacteriol. 1964 May;87(5):1073–1078. doi: 10.1128/jb.87.5.1073-1078.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. TAGAWA K., ARNON D. I. Ferredoxins as electron carriers in photosynthesis and in the biological production and consumption of hydrogen gas. Nature. 1962 Aug 11;195:537–543. doi: 10.1038/195537a0. [DOI] [PubMed] [Google Scholar]
  13. VALENTINE R. C. BACTERIAL FERREDOXIN. Bacteriol Rev. 1964 Dec;28:497–517. doi: 10.1128/br.28.4.497-517.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. WHITELEY H. R., McCORMICK N. G. Degradation of pyruvate by Micrococcus lactilyticus. III. Properties and cofactor requirements of the carbon dioxide-exchange reaction. J Bacteriol. 1963 Feb;85:382–393. doi: 10.1128/jb.85.2.382-393.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. WOLFE R. S., O'KANE D. J. Cofactors of the carbon dioxide exchange reaction of Clostridium butyricum. J Biol Chem. 1955 Aug;215(2):637–643. [PubMed] [Google Scholar]
  16. Wilson J., Krampitz L. O., Werkman C. H. Reversibility of a phosphoroclastic reaction. Biochem J. 1948;42(4):598–600. doi: 10.1042/bj0420598. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES