Abstract
Wiley, W. R. (Battelle Memorial Institute, Richland, Wash.), and W. H. Matchett. Tryptophan transport in Neurospora crassa. I. Specificity and kinetics. J. Bacteriol. 92:1698–1705. 1966.—The transport of tryptophan in Neurospora crassa is mediated by a distinct stereospecific system which is chemically specific for a family of neutral amino acids. The process shows typical saturation kinetics and a sharp decrease in the rate of tryptophan uptake at low temperatures. The Q10 for the process is approximately 2 between 20 and 30 C. The apparent Km for uptake is 5 × 10−5m. Leucine and phenylalanine competitively inhibit the rate of tryptophan transport; the Ki values are 1.1 × 10−4m and 4.0 × 10−5m, respectively. These data are interpreted as evidence that these amino acids are transported by the same transport site(s). Inhibition studies with amino acids and other compounds structurally related to leucine and phenylalanine suggest that an uncharged side chain and an α amino group, next to a carboxyl, represent three attachment points for the uptake site.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- BRITTEN R. J., McCLURE F. T. The amino acid pool in Escherichia coli. Bacteriol Rev. 1962 Sep;26:292–335. doi: 10.1128/br.26.3.292-335.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
- CHRISTENSEN H. N., RIGGS T. R. Concentrative uptake of amino acids by the Ehrlich mouse ascites carcinoma cell. J Biol Chem. 1952 Jan;194(1):57–68. [PubMed] [Google Scholar]
- CHRISTENSEN H. N. Reactive sites and biological transport. Adv Protein Chem. 1960;15:239–314. doi: 10.1016/s0065-3233(08)60310-1. [DOI] [PubMed] [Google Scholar]
- DEMOSS J. A. Studies on the mechanism of the tryptophan synthetase reaction. Biochim Biophys Acta. 1962 Aug 13;62:279–293. doi: 10.1016/0006-3002(62)90041-0. [DOI] [PubMed] [Google Scholar]
- DeBusk B. G., DeBusk A. G. Molecular transport in Neurospora crassa. I. Biochemical properties of a phenylalanine permease. Biochim Biophys Acta. 1965 Jun 15;104(1):139–150. doi: 10.1016/0304-4165(65)90229-1. [DOI] [PubMed] [Google Scholar]
- HEINZ E., MARIANI H. A. Concentration work and energy dissipation in active transport of glycine into carcinoma cells. J Biol Chem. 1957 Sep;228(1):97–111. [PubMed] [Google Scholar]
- Lester G. Genetic control of amino acid permeability in Neurospora crassa. J Bacteriol. 1966 Feb;91(2):677–684. doi: 10.1128/jb.91.2.677-684.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MATCHETT W. H., DEMOSS J. A. PHYSIOLOGICAL CHANNELING OF TRYPTOPHAN IN NEUROSPORA CRASSA. Biochim Biophys Acta. 1964 Apr 4;86:91–99. doi: 10.1016/0304-4165(64)90162-x. [DOI] [PubMed] [Google Scholar]
- Matchett W. H. The utilization of tryptophan by neurospora. Biochim Biophys Acta. 1965 Sep 13;107(2):222–231. doi: 10.1016/0304-4165(65)90129-7. [DOI] [PubMed] [Google Scholar]
- STLAWRENCE P., MALING B. D., ALTWERGER L., RACHMELER M. MUTATIONAL ALTERATION OF PERMEABILITY IN NEUROSPORA: EFFECTS ON GROWTH AND THE UPTAKE OF CERTAIN AMINO ACIDS AND RELATED COMPOUNDS. Genetics. 1964 Dec;50:1383–1402. doi: 10.1093/genetics/50.6.1383. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ZALOKAR M. Kinetics of amino acid uptake and protein synthesis in Neurospora. Biochim Biophys Acta. 1961 Jan 29;46:423–432. doi: 10.1016/0006-3002(61)90573-x. [DOI] [PubMed] [Google Scholar]