Skip to main content
EURASIP Journal on Bioinformatics and Systems Biology logoLink to EURASIP Journal on Bioinformatics and Systems Biology
. 2007 Jul 10;2007(1):64628. doi: 10.1155/2007/64628

Gene Selection for Multiclass Prediction by Weighted Fisher Criterion

Jianhua Xuan 1,, Yue Wang 1, Yibin Dong 1, Yuanjian Feng 1, Bin Wang 1, Javed Khan 2, Maria Bakay 3, Zuyi Wang 1,3, Lauren Pachman 4, Sara Winokur 5, Yi-Wen Chen 3, Robert Clarke 6, Eric Hoffman 3
PMCID: PMC3171347  PMID: 17713593

Abstract

Gene expression profiling has been widely used to study molecular signatures of many diseases and to develop molecular diagnostics for disease prediction. Gene selection, as an important step for improved diagnostics, screens tens of thousands of genes and identifies a small subset that discriminates between disease types. A two-step gene selection method is proposed to identify informative gene subsets for accurate classification of multiclass phenotypes. In the first step, individually discriminatory genes (IDGs) are identified by using one-dimensional weighted Fisher criterion (wFC). In the second step, jointly discriminatory genes (JDGs) are selected by sequential search methods, based on their joint class separability measured by multidimensional weighted Fisher criterion (wFC). The performance of the selected gene subsets for multiclass prediction is evaluated by artificial neural networks (ANNs) and/or support vector machines (SVMs). By applying the proposed IDG/JDG approach to two microarray studies, that is, small round blue cell tumors (SRBCTs) and muscular dystrophies (MDs), we successfully identified a much smaller yet efficient set of JDGs for diagnosing SRBCTs and MDs with high prediction accuracies (96.9% for SRBCTs and 92.3% for MDs, resp.). These experimental results demonstrated that the two-step gene selection method is able to identify a subset of highly discriminative genes for improved multiclass prediction.

[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47]

Contributor Information

Jianhua Xuan, Email: xuan@vt.edu.

Yue Wang, Email: yuewang@vt.edu.

Yibin Dong, Email: yibin.dong@vt.edu.

Yuanjian Feng, Email: yjfeng@vt.edu.

Bin Wang, Email: binwang@vt.edu.

Javed Khan, Email: khanjav@mail.nih.gov.

Maria Bakay, Email: mbakay@cnmcresearch.org.

Zuyi Wang, Email: zwang@cnmcresearch.org.

Lauren Pachman, Email: pachman@northwestern.edu.

Sara Winokur, Email: stwinoku@uci.edu.

Yi-Wen Chen, Email: ychen@cnmcresearch.org.

Robert Clarke, Email: clarker@georgetown.edu.

Eric Hoffman, Email: ehoffman@cnmcresearch.org.

References

  1. Bittner M, Meltzer P, Chen Y. et al. Molecular classification of cutaneous malignant melanoma by gene expression profiling. Nature. 2000;406(6795):536–540. doi: 10.1038/35020115. [DOI] [PubMed] [Google Scholar]
  2. Golub TR, Slonim DK, Tamayo P. et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science. 1999;286(5439):531–537. doi: 10.1126/science.286.5439.531. [DOI] [PubMed] [Google Scholar]
  3. Shipp MA, Ross KN, Tamayo P. et al. Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning. Nature Medicine. 2002;8(1):68–74. doi: 10.1038/nm0102-68. [DOI] [PubMed] [Google Scholar]
  4. Liotta L, Petricoin E. Molecular profiling of human cancer. Nature Reviews Genetics. 2000;1(1):48–56. doi: 10.1038/35049567. [DOI] [PubMed] [Google Scholar]
  5. Jain AK, Duin RPW, Mao J. Statistical pattern recognition: a review. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2000;22(1):4–37. doi: 10.1109/34.824819. [DOI] [Google Scholar]
  6. Jain AK, Zongker D. Feature selection: evaluation, application, and small sample performance. IEEE Transactions on Pattern Analysis and Machine Intelligence. 1997;19(2):153–158. doi: 10.1109/34.574797. [DOI] [Google Scholar]
  7. Raudys SJ, Jain AK. Small sample size effects in statistical pattern recognition: recommendations for practitioners. IEEE Transactions on Pattern Analysis and Machine Intelligence. 1991;13(3):252–264. doi: 10.1109/34.75512. [DOI] [Google Scholar]
  8. Fukunaga K. Introduction to Statistical Pattern Recognition. 2. Academic Press, Boston, Mass, USA; 1990. [Google Scholar]
  9. Devijver PA, Kittler J. Pattern Recognition: A Statistical Approach. Prentice-Hall, Englewood Cliffs, NJ, USA; 1982. [Google Scholar]
  10. Pudil P, Novovicova J, Kittler J. Floating search methods in feature selection. Pattern Recognition Letters. 1994;15(11):1119–1125. doi: 10.1016/0167-8655(94)90127-9. [DOI] [Google Scholar]
  11. Dudoit S, Fridlyand J, Speed TP. Comparison of discrimination methods for the classification of tumors using gene expression data. Journal of the American Statistical Association. 2002;97(457):77–87. doi: 10.1198/016214502753479248. [DOI] [Google Scholar]
  12. Khan J, Wei JS, Ringnér M. et al. Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nature Medicine. 2001;7(6):673–679. doi: 10.1038/89044. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Li T, Zhang C, Ogihara M. A comparative study of feature selection and multiclass classfication methods for tissue classification based on gene expression. Bioinformatics. 2004;20(15):2429–2437. doi: 10.1093/bioinformatics/bth267. [DOI] [PubMed] [Google Scholar]
  14. Tibshirani R, Hastie T, Narasimhan B, Chu G. Diagnosis of multiple cancer types by shrunken centroids of gene expression. Proceedings of the National Academy of Sciences of the United States of America. 2002;99(10):6567–6572. doi: 10.1073/pnas.082099299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Xiong M, Fang X, Zhao J. Biomarker identification by feature wrappers. Genome Research. 2001;11(11):1878–1887. doi: 10.1101/gr.190001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Loog M. Approximate Pairwise Accuracy Criteria for Multiclass Linear Dimension Reduction: Generalisations of the Fisher Criterion. Delft University Press, Delft, The Netherlands; 1999. [Google Scholar]
  17. Loog M, Duin RPW, Haeb-Umbach R. Multiclass linear dimension reduction by weighted pairwise Fisher criteria. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2001;23(7):762–766. doi: 10.1109/34.935849. [DOI] [Google Scholar]
  18. Koop JC Generalized inverse of a singular matrix Nature 196320071614109987 [Google Scholar]
  19. Press WM, Flannery BP, Teukolsky SA, Vetterling WT. Numerical Recipes: The Art of Scientific Computing. Cambridge University Press, New York, NY, USA; 1986. [Google Scholar]
  20. Narendra PM, Fukunaga K. A branch and bound algorithm for feature subset selection. IEEE Transactions on Computers. 1977;26(9):917–922. [Google Scholar]
  21. Marill T, Green DM. On the effectiveness of receptors in cognition system. IEEE Transactions on Information Theory. 1963;9:11–17. doi: 10.1109/TIT.1963.1057810. [DOI] [Google Scholar]
  22. Whitney AW. A direct method of nonparametric measurement selection. IEEE Transactions on Computers. 1971;20(9):1100–1103. [Google Scholar]
  23. Stearns SD. On selecting features for pattern classifiers. Proceedings of the 3rd International Conference on Pattern Recognition, Coronado, Calif, USA, November 1976. pp. 71–75.
  24. Haykin S. Neural Networks: A Comprehensive Foundation. 2. Prentice-Hall, Upper Saddle River, NJ, USA; 1999. [Google Scholar]
  25. Lee Y, Lee C-K. Classification of multiple cancer types by multicategory support vector machines using gene expression data. Bioinformatics. 2003;19(9):1132–1139. doi: 10.1093/bioinformatics/btg102. [DOI] [PubMed] [Google Scholar]
  26. Ramaswamy S, Tamayo P, Rifkin R. et al. Multiclass cancer diagnosis using tumor gene expression signatures. Proceedings of the National Academy of Sciences of the United States of America. 2001;98(26):15149–15154. doi: 10.1073/pnas.211566398. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Bakay M, Chen Y-W, Borup R, Zhao P, Nagaraju K, Hoffman E. Sources of variability and effect of experimental approach on expression profiling data interpretation. BMC Bioinformatics. 2002;3(1):4. doi: 10.1186/1471-2105-3-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Bakay M, Wang Z, Melcon G. et al. Nuclear envelope dystrophies show a transcriptional fingerprint suggesting disruption of Rb-MyoD pathways in muscle regeneration. Brain. 2006;129(4):996–1013. doi: 10.1093/brain/awl023. [DOI] [PubMed] [Google Scholar]
  29. Affymetrix Technical Note. Statistical algorithms description document. Affymetrix. 2002. http://www.affymetrix.com/support/technical/whitepapers/sadd_whitepaper.pdf http://www.affymetrix.com/support/technical/whitepapers/sadd_whitepaper.pdf
  30. Zhao P, Seo J, Wang Z, Wang Y, Shneiderman B, Hoffman E. In vivo filtering of in vitro expression data reveals MyoD targets. Comptes Rendus - Biologies. 2003;326(10-11):1049–1065. doi: 10.1016/j.crvi.2003.09.035. [DOI] [PubMed] [Google Scholar]
  31. Zhao P, Hoffman E. Embryonic myogenesis pathways in muscle regeneration. Developmental Dynamics. 2004;229(2):380–392. doi: 10.1002/dvdy.10457. [DOI] [PubMed] [Google Scholar]
  32. Winokur S, Chen Y-W, Masny PS. et al. Expression profiling of FSHD muscle supports a defect in specific stages of myogenic differentiation. Human Molecular Genetics. 2003;12(22):2895–2907. doi: 10.1093/hmg/ddg327. [DOI] [PubMed] [Google Scholar]
  33. Bakay M, Zhao P, Chen J, Hoffman E. A web-accessible complete transcriptome of normal human and DMD muscle. Neuromuscular Disorders. 2002;12(1):S125–S141. doi: 10.1016/s0960-8966(02)00093-7. [DOI] [PubMed] [Google Scholar]
  34. Chen Y-W, Zhao P, Borup R, Hoffman E. Expression profiling in the muscular dystrophies: identification of novel aspects of molecular pathophysiology. Journal of Cell Biology. 2000;151(6):1321–1336. doi: 10.1083/jcb.151.6.1321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Hoffman E, Brown RH Jr., Kunkel LM. Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Cell. 1987;51(6):919–928. doi: 10.1016/0092-8674(87)90579-4. [DOI] [PubMed] [Google Scholar]
  36. Koening M, Hoffman E, Bertelson CJ, Monaco AP, Feener C, Kunkel LM. Complete cloning of the Duchenne muscular dystrophy (DMD) cDNA and preliminary genomic organization of the DMD gene in normal and affected individuals. Cell. 1987;50(3):509–517. doi: 10.1016/0092-8674(87)90504-6. [DOI] [PubMed] [Google Scholar]
  37. Zhao P, Iezzi S, Carver E. et al. Slug is a novel downstream target of MyoD. Temporal profiling in muscle regeneration. Journal of Biological Chemistry. 2002;277(33):30091–30101. doi: 10.1074/jbc.M202668200. [DOI] [PubMed] [Google Scholar]
  38. Fernandes RJ, Skiena SS. Microarray synthesis through multiple-use PCR primer design. Bioinformatics. 2002;18(1):S128–S135. doi: 10.1093/bioinformatics/18.suppl_1.S128. [DOI] [PubMed] [Google Scholar]
  39. Jaeger J, Weichenhan D, Ivandic B, Spang R. Early diagnostic marker panel determination for microarray based clinical studies. Statistical Applications in Genetics and Molecular Biology. 2005;4(1, article 9) doi: 10.2202/1544-6115.1109. [DOI] [PubMed] [Google Scholar]
  40. Li W. How many genes are needed for early detection of breast cancer, based on gene expression patterns in peripheral blood cells? Breast Cancer Research. 2005;7(5):E5. doi: 10.1186/bcr1295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Glas AM, Floore A, Delahaye LJMJ. et al. Converting a breast cancer microarray signature into a high-throughput diagnostic test. BMC Genomics. 2006;7:278. doi: 10.1186/1471-2164-7-278. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Duin RPW. Classifiers in almost empty spaces. Proceedings of the 15th International Conference on Pattern Recognition (ICPR '00), Barcelona, Spain, September 2000. pp. 1–7.
  43. Raudys SJ. Evolution and generalization of a single neurone—I: single-layer perceptron as seven statistical classifiers. Neural Networks. 1998;11(2):283–296. doi: 10.1016/S0893-6080(97)00135-4. [DOI] [PubMed] [Google Scholar]
  44. Raudys SJ. Evolution and generalization of a single neurone—II: complexity of statistical classifiers and sample size considerations. Neural Networks. 1998;11(2):297–313. doi: 10.1016/S0893-6080(97)00136-6. [DOI] [PubMed] [Google Scholar]
  45. Raudys SJ, Duin RPW. Expected classification error of the Fisher linear classifier with pseudo-inverse covariance matrix. Pattern Recognition Letters. 1998;19(5-6):385–392. doi: 10.1016/S0167-8655(98)00016-6. [DOI] [Google Scholar]
  46. Vapnik VN. Statistical Learning Theory. John Wiley & Sons, New York, NY, USA; 1998. [Google Scholar]
  47. Oja E. Subspace Methods of Pattern Recognition. John Wiley & Sons, New York, NY, USA; 1984. [Google Scholar]

Articles from EURASIP Journal on Bioinformatics and Systems Biology are provided here courtesy of Springer

RESOURCES