Abstract
We investigate in this paper reverse engineering of gene regulatory networks from time-series microarray data. We apply dynamic Bayesian networks (DBNs) for modeling cell cycle regulations. In developing a network inference algorithm, we focus on soft solutions that can provide a posteriori probability (APP) of network topology. In particular, we propose a variational Bayesian structural expectation maximization algorithm that can learn the posterior distribution of the network model parameters and topology jointly. We also show how the obtained APPs of the network topology can be used in a Bayesian data integration strategy to integrate two different microarray data sets. The proposed VBSEM algorithm has been tested on yeast cell cycle data sets. To evaluate the confidence of the inferred networks, we apply a moving block bootstrap method. The inferred network is validated by comparing it to the KEGG pathway map.
[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31]
Contributor Information
Isabel Tienda Luna, Email: isabelt@ugr.es.
Yufei Huang, Email: yufei.huang@utsa.edu.
Yufang Yin, Email: yyin@lonestar.utsa.edu.
Diego P Ruiz Padillo, Email: druiz@ugr.es.
M Carmen Carrion Perez, Email: mcarrion@ugr.es.
References
- Kitano H. Looking beyond that details: a rise in system-oriented approaches in genetics and molecular biology. Current Genetics. 2002;41(1):1–10. doi: 10.1007/s00294-002-0285-z. [DOI] [PubMed] [Google Scholar]
- D'haeseleer P, Liang S, Somogyi R. Genetic network inference: from co-expression clustering to reverse engineering. Bioinformatics. 2000;16(8):707–726. doi: 10.1093/bioinformatics/16.8.707. [DOI] [PubMed] [Google Scholar]
- Brazhnik P, de la Fuente A, Mendes P. Gene networks: how to put the function in genomics. Trends in Biotechnology. 2002;20(11):467–472. doi: 10.1016/S0167-7799(02)02053-X. [DOI] [PubMed] [Google Scholar]
- Friedman N. Inferring cellular networks using probabilistic graphical models. Science. 2004;303(5659):799–805. doi: 10.1126/science.1094068. [DOI] [PubMed] [Google Scholar]
- Shmulevich I, Dougherty ER, Kim S, Zhang W. Probabilistic Boolean networks: a rule-based uncertainty model for gene regulatory networks. Bioinformatics. 2002;18(2):261–274. doi: 10.1093/bioinformatics/18.2.261. [DOI] [PubMed] [Google Scholar]
- Zhou X, Wang X, Dougherty ER. Construction of genomic networks using mutual-information clustering and reversible-jump Markov-chain-Monte-Carlo predictor design. Signal Processing. 2003;83(4):745–761. doi: 10.1016/S0165-1684(02)00469-3. [DOI] [Google Scholar]
- Hartemink AJ, Gifford DK, Jaakkola TS, Young RA. Using graphical models and genomic expression data to statistically validate models of genetic regulatory networks. Proceedings of the 6th Pacific Symposium on Biocomputing (PSB '01), The Big Island of Hawaii, Hawaii, USA, January 2001. pp. 422–433. [DOI] [PubMed]
- Moler EJ, Radisky DC, Mian IS. Integrating naive Bayes models and external knowledge to examine copper and iron homeostasis in S. cerevisiae. Physiol Genomics. 2000;4(2):127–135. doi: 10.1152/physiolgenomics.2000.4.2.127. [DOI] [PubMed] [Google Scholar]
- Segal E. Rich probabilistic models for genomic data, Ph.D. thesis. Stanford University, Stanford, Calif, USA; 2004. [Google Scholar]
- de Jong H. Modeling and simulation of genetic regulatory systems: a literature review. Journal of Computational Biology. 2002;9(1):67–103. doi: 10.1089/10665270252833208. [DOI] [PubMed] [Google Scholar]
- Bar-Joseph Z. Analyzing time series gene expression data. Bioinformatics. 2004;20(16):2493–2503. doi: 10.1093/bioinformatics/bth283. [DOI] [PubMed] [Google Scholar]
- Simonis N, Wodak SJ, Cohen GN, van Helden J. Combining pattern discovery and discriminant analysis to predict gene co-regulation. Bioinformatics. 2004;20(15):2370–2379. doi: 10.1093/bioinformatics/bth252. [DOI] [PubMed] [Google Scholar]
- Murphy K, Mian S. Modelling gene expression data using dynamic Bayesian networks. Computer Science Division, University of California, Berkeley, Calif, USA; 1999. [Google Scholar]
- Friedman N, Linial M, Nachman I, Pe'er D. Using Bayesian networks to analyze expression data. Journal of Computational Biology. 2000;7(3-4):601–620. doi: 10.1089/106652700750050961. [DOI] [PubMed] [Google Scholar]
- van Berlo RJP, van Someren EP, Reinders MJT. Studying the conditions for learning dynamic Bayesian networks to discover genetic regulatory networks. Simulation. 2003;79(12):689–702. [Google Scholar]
- Beal MJ, Falciani F, Ghahramani Z, Rangel C, Wild DL. A Bayesian approach to reconstructing genetic regulatory networks with hidden factors. Bioinformatics. 2005;21(3):349–356. doi: 10.1093/bioinformatics/bti014. [DOI] [PubMed] [Google Scholar]
- Perrin B-E, Ralaivola L, Mazurie A, Bottani S, Mallet J, d'Alché-Buc F. Gene networks inference using dynamic Bayesian networks. Bioinformatics. 2003;19(2):ii138–ii148. doi: 10.1093/bioinformatics/btg1071. [DOI] [PubMed] [Google Scholar]
- Kim SY, Imoto S, Miyano S. Inferring gene networks from time series microarray data using dynamic Bayesian networks. Briefings in Bioinformatics. 2003;4(3):228–235. doi: 10.1093/bib/4.3.228. [DOI] [PubMed] [Google Scholar]
- Ferrazzi F, Amici R, Sebastiani P, Kohane IS, Ramoni MF, Bellazzi R. Can we use linear Gaussian networks to model dynamic interactions among genes? Results from a simulation study. Proceedings of IEEE International Workshop on Genomic Signal Processing and Statistics (GENSIPS '06), College Station, Tex, USA, May 2006. pp. 13–14.
- Wang X, Poor HV. Wireless Communication Systems: Advanced Techniques for Signal Reception. Prentice Hall PTR, Englewood Cliffs, NJ, USA; 2004. [Google Scholar]
- Wang J, Huang Y, Sanchez M, Wang Y, Zhang J. Reverse engineering yeast gene regulatory networks using graphical models. Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP '06), Toulouse, France, May 2006. pp. 1088–1091.
- Husmeier D. Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks. Bioinformatics. 2003;19(17):2271–2282. doi: 10.1093/bioinformatics/btg313. [DOI] [PubMed] [Google Scholar]
- Murphy KP. Dynamic Bayesian networks: representation, inference and learning, Ph.D. thesis. University of California, Berkeley, Calif, USA; 2004. [Google Scholar]
- Kay SM. Fundamentals of Statistical Signal Processing: Estimation Theory. Prentice-Hall, Englewood Cliffs, NJ, USA; 1997. [Google Scholar]
- Beal MJ. Variational algorithms for approximate Bayesian inference, Ph.D. thesis. The Gatsby Computational Neuroscience Unit, University College London, London, UK; 2003. [Google Scholar]
- Brooks SP. Markov chain Monte Carlo method and its application. Journal of the Royal Statistical Society: Series D, The Statistician. 1998;47(1):69–100. doi: 10.1111/1467-9884.00117. [DOI] [Google Scholar]
- Spellman PT, Sherlock G, Zhang MQ. et al. Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Molecular Biology of the Cell. 1998;9(12):3273–3297. doi: 10.1091/mbc.9.12.3273. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cho RJ, Campbell MJ, Winzeler EA. et al. A genome-wide transcriptional analysis of the mitotic cell cycle. Molecular Cell. 1998;2(1):65–73. doi: 10.1016/S1097-2765(00)80114-8. [DOI] [PubMed] [Google Scholar]
- Efron B, Tibshirani R. An Introduction to Bootstrap, Monographs on Statistics and Applied Probability, no. 57. Chapman & Hall, New York, NY, USA; 1993. [Google Scholar]
- Lahiri SN. Resampling Methods for Dependent Data. Springer, New York, NY, USA; 2003. [Google Scholar]
- Kegg: Kyoto encyclopedia of genes and genomes. http://www.genome.jp/kegg/
