Skip to main content
EURASIP Journal on Bioinformatics and Systems Biology logoLink to EURASIP Journal on Bioinformatics and Systems Biology
. 2007 Jun 24;2007(1):79879. doi: 10.1155/2007/79879

Information-Theoretic Inference of Large Transcriptional Regulatory Networks

Patrick E Meyer 1,, Kevin Kontos 1, Frederic Lafitte 1, Gianluca Bontempi 1
PMCID: PMC3171353  PMID: 18354736

Abstract

The paper presents MRNET, an original method for inferring genetic networks from microarray data. The method is based on maximum relevance/minimum redundancy (MRMR), an effective information-theoretic technique for feature selection in supervised learning. The MRMR principle consists in selecting among the least redundant variables the ones that have the highest mutual information with the target. MRNET extends this feature selection principle to networks in order to infer gene-dependence relationships from microarray data. The paper assesses MRNET by benchmarking it against RELNET, CLR, and ARACNE, three state-of-the-art information-theoretic methods for large (up to several thousands of genes) network inference. Experimental results on thirty synthetically generated microarray datasets show that MRNET is competitive with these methods.

[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28]

Contributor Information

Patrick E Meyer, Email: pmeyer@ulb.ac.be.

Kevin Kontos, Email: kkontos@ulb.ac.be.

Frederic Lafitte, Email: flafitte@ulb.ac.be.

Gianluca Bontempi, Email: gbonte@ulb.ac.be.

References

  1. van Someren EP, Wessels LFA, Backer E, Reinders MJT. Genetic network modeling. Pharmacogenomics. 2002;3(4):507–525. doi: 10.1517/14622416.3.4.507. [DOI] [PubMed] [Google Scholar]
  2. Gardner TS, Faith JJ. Reverse-engineering transcription control networks. Physics of Life Reviews. 2005;2(1):65–88. doi: 10.1016/j.plrev.2005.01.001. [DOI] [PubMed] [Google Scholar]
  3. Chow C, Liu C. Approximating discrete probability distributions with dependence trees. IEEE Transactions on Information Theory. 1968;14(3):462–467. doi: 10.1109/TIT.1968.1054142. [DOI] [Google Scholar]
  4. Butte AJ, Kohane IS. Mutual information relevance networks: functional genomic clustering using pairwise entropy measurements. Pacific Symposium on Biocomputing. 2000. pp. 418–429. [DOI] [PubMed]
  5. Margolin AA, Nemenman I, Basso K. et al. ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinformatics. 2006;7(1):S7. doi: 10.1186/1471-2105-7-S1-S7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Faith JJ, Hayete B, Thaden JT. et al. Large-scale mapping and validation of Escherichia coli transcriptional regulation from a compendium of expression profiles. PLoS Biology. 2007;5(1):e8. doi: 10.1371/journal.pbio.0050008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Pearl J. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible. Morgan Kaufmann, San Fransisco, Calif, USA; 1988. [Google Scholar]
  8. Cheng J, Greiner R, Kelly J, Bell D, Liu W. Learning Bayesian networks from data: an information-theory based approach. Artificial Intelligence. 2002;137(1-2):43–90. doi: 10.1016/S0004-3702(02)00191-1. [DOI] [Google Scholar]
  9. Schneidman E, Still S, Berry MJ II, Bialek W. Network information and connected correlations. Physical Review Letters. 2003;91(23):4 pages. doi: 10.1103/PhysRevLett.91.238701. [DOI] [PubMed] [Google Scholar]
  10. Nemenman I. Tech. Rep. NSF-KITP-04-54. KITP, UCSB, Santa Barbara, Calif, USA; 2004. Multivariate dependence, and genetic network inference. [Google Scholar]
  11. Tourassi GD, Frederick ED, Markey MK, Floyd CE Jr.. Application of the mutual information criterion for feature selection in computer-aided diagnosis. Medical Physics. 2001;28(12):2394–2402. doi: 10.1118/1.1418724. [DOI] [PubMed] [Google Scholar]
  12. Ding C, Peng H. Minimum redundancy feature selection from microarray gene expression data. Journal of Bioinformatics and Computational Biology. 2005;3(2):185–205. doi: 10.1142/S0219720005001004. [DOI] [PubMed] [Google Scholar]
  13. Meyer PE, Bontempi G. In: Applications of Evolutionary Computing: EvoWorkshops, Lecture Notes in Computer Science. Rothlauf F, Branke J, Cagnoniet S, et al., editor. Vol. 3907. Springer, Berlin, Germany; 2006. On the use of variable complementarity for feature selection in cancer classification; pp. 91–102. [DOI] [Google Scholar]
  14. Meyer PE, Kontos K, Bontempi G. Biological network inference using redundancy analysis. Proceedings of the 1st International Conference on Bioinformatics Research and Development (BIRD '07), Berlin, Germany, March 2007. pp. 916–927.
  15. Butte AJ, Tamayo P, Slonim D, Golub TR, Kohane IS. Discovering functional relationships between RNA expression and chemotherapeutic susceptibility using relevance networks. Proceedings of the National Academy of Sciences of the United States of America. 2000;97(22):12182–12186. doi: 10.1073/pnas.220392197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Cover TM, Thomas JA. Elements of Information Theory. John Wiley & Sons, New York, NY, USA; 1990. [Google Scholar]
  17. Merz P, Freisleben B. Greedy and local search heuristics for unconstrained binary quadratic programming. Journal of Heuristics. 2002;8(2):197–213. doi: 10.1023/A:1017912624016. [DOI] [Google Scholar]
  18. Rogers S, Girolami M. A Bayesian regression approach to the inference of regulatory networks from gene expression data. Bioinformatics. 2005;21(14):3131–3137. doi: 10.1093/bioinformatics/bti487. [DOI] [PubMed] [Google Scholar]
  19. van den Bulcke T, van Leemput K, Naudts B. et al. SynTReN: a generator of synthetic gene expression data for design and analysis of structure learning algorithms. BMC Bioinformatics. 2006;7:43. doi: 10.1186/1471-2105-7-43. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Paninski L. Estimation of entropy and mutual information. Neural Computation. 2003;15(6):1191–1253. doi: 10.1162/089976603321780272. [DOI] [Google Scholar]
  21. Beirlant J, Dudewica EJ, Gyofi L, van der Meulen E. Nonparametric entropy estimation: an overview. Journal of Statistics. 1997;6(1):17–39. [Google Scholar]
  22. Dougherty J, Kohavi R, Sahami M. Supervised and unsupervised discretization of continuous features. Proceedings of the 12th International Conference on Machine Learning (ML '95), Lake Tahoe, Calif, USA, July 1995. pp. 194–202.
  23. Provost FJ, Fawcett T, Kohavi R. Proceedings of the 15th International Conference on Machine Learning (ICML '98), Madison, Wis, USA, July 1998. Morgan Kaufmann; The case against accuracy estimation for comparing induction algorithms; pp. 445–453. [Google Scholar]
  24. Bockhorst J, Craven M. In: Advances in Neural Information Processing Systems 17. Saul LK, Weiss Y, Bottou L, editor. MIT Press, Cambridge, Mass, USA; 2005. Markov networks for detecting overlapping elements in sequence data; pp. 193–200. [Google Scholar]
  25. Dietterich TG. Approximate statistical tests for comparing supervised classification learning algorithms. Neural Computation. 1998;10(7):1895–1923. doi: 10.1162/089976698300017197. [DOI] [PubMed] [Google Scholar]
  26. Hwang KB, Lee JW, Chung S-W, Zhang B-T. Construction of large-scale Bayesian networks by local to global search. Proceedings of the 7th Pacific Rim International Conference on Artificial Intelligence (PRICAI '02), Tokyo, Japan, August 2002. pp. 375–384.
  27. Tsamardinos I, Aliferis C, Statnikov A. Algorithms for large scale markov blanket discovery. Proceedings of the 16th International Florida Artificial Intelligence Research Society Conference (FLAIRS '03), St. Augustine, Fla, USA, May 2003. pp. 376–381.
  28. Tsamardinos I, Aliferis C. Towards principled feature selection: relevancy, filters and wrappers. Proceedings of the 9th International Workshop on Artificial Intelligence and Statistics (AI&Stats '03), Key West, Fla, USA. January 2003.

Articles from EURASIP Journal on Bioinformatics and Systems Biology are provided here courtesy of Springer

RESOURCES