Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1953 Nov;66(5):517–525. doi: 10.1128/jb.66.5.517-525.1953

TERMINAL RESPIRATION IN PSEUDOMONAS FLUORESCENS: COMPONENT ENZYMES OF THE TRICARBOXYLIC ACID CYCLE1

James T Barrett a, R E Kallio a
PMCID: PMC317427  PMID: 13108849

Full text

PDF
517

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AJL S. J. Acetic acid oxidation by Escherichia coli and Aerobacter aerogenes. J Bacteriol. 1950 Apr;59(4):499–507. doi: 10.1128/jb.59.4.499-507.1950. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. AJL S. J. Studies on the mechanism of acetate oxidation by bacteria. VI. Comparative patterns of acetate oxidation by citrate-grown and acetate-grown Aerobacter aerogenes. J Gen Physiol. 1951 Sep;35(1):119–127. doi: 10.1085/jgp.35.1.119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. AJL S. J. Terminal respiratory patterns in microorganisms. Bacteriol Rev. 1951 Dec;15(4):211–244. doi: 10.1128/br.15.4.211-244.1951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. AJL S. J., WONG D. T. O. Studies on the mechanism of acetate oxidation by bacteria. IV. Acetate oxidation by citrate-grown Aerobacter aerogenes studied with radioactive carbon. J Bacteriol. 1951 Apr;61(4):379–387. doi: 10.1128/jb.61.4.379-387.1951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. AYENGAR P., ROBERTS E., RAMASARMA G. B. Rôles of glutamine in growth of Lactobacillus arabinosus. J Biol Chem. 1951 Dec;193(2):781–791. [PubMed] [Google Scholar]
  6. BARBAN S., AJL S. Triphosphopyridine nucleotide linked isocitric dehydrogenase in bacteria. J Bacteriol. 1952 Oct;64(4):443–453. doi: 10.1128/jb.64.4.443-453.1952. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. BARRETT J. T., LARSON A. D., KALLIO R. E. The nature of the adaptive lag of Pseudomonas fluorescens toward citrate. J Bacteriol. 1953 Feb;65(2):187–192. doi: 10.1128/jb.65.2.187-192.1953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. BARRON E. S. G., ARDAO M. I., HEARON M. The mechanism of acetate oxidation by Corynebacterium creatinovorans. Arch Biochem. 1950 Nov;29(1):130–153. [PubMed] [Google Scholar]
  9. BILLEN D., LICHSTEIN H. C. Nutritional requirement for the production of formic hydrogenylase, formic dehydrogenase, and hydrogenase, in Escherichia coli. J Bacteriol. 1951 Apr;61(4):515–522. doi: 10.1128/jb.61.4.515-522.1951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. CAMPBELL J. J. R., STOKES F. N. Tricarboxylic acid cycle in Pseudomonas aeruginosa. J Biol Chem. 1951 Jun;190(2):853–858. [PubMed] [Google Scholar]
  11. COHEN G. N. Metabolism of bacteria. Annu Rev Microbiol. 1951;5:71–100. doi: 10.1146/annurev.mi.05.100151.000443. [DOI] [PubMed] [Google Scholar]
  12. DAGLEY S., MORRISON G. A., DAWES E. A. The "dicarboxylic acid cycle" in bacterial metabolism. Arch Biochem Biophys. 1951 Jun;32(1):231–232. doi: 10.1016/0003-9861(51)90266-4. [DOI] [PubMed] [Google Scholar]
  13. DELWICHE E. A., CARSON S. F. A citric acid cycle in Propionibacterium pentosaceum. J Bacteriol. 1953 Mar;65(3):318–321. doi: 10.1128/jb.65.3.318-321.1953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. DIETRICH E. V., FISHER A. L., LONG J. P., FEATHERSTONE R. M. The effect of some succinic acid anologs on succinoxidase activity. Arch Biochem Biophys. 1952 Nov;41(1):118–124. doi: 10.1016/0003-9861(52)90510-9. [DOI] [PubMed] [Google Scholar]
  15. FELDMAN L. I., GUNSALUS I. C. The occurrence of a wide variety of transaminases in bacteria. J Biol Chem. 1950 Dec;187(2):821–830. [PubMed] [Google Scholar]
  16. FOULKES E. C. The occurrence of the tricarboxylic acid cycle in yeast. Biochem J. 1951 Mar;48(3):378–383. doi: 10.1042/bj0480378. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. FUKUI G. M., VANDEMARK P. J. Evidence for a tricarboxylic acid cycle in Corynebacterium creatinovorans. J Bacteriol. 1952 Dec;64(6):887–889. doi: 10.1128/jb.64.6.887-889.1952. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. KORNBERG A., PRICER W. E., Jr Di- and triphosphopyridine nucleotide isocitric dehydrogenases in yeast. J Biol Chem. 1951 Mar;189(1):123–136. [PubMed] [Google Scholar]
  19. Koser S. A., Kasai G. J. Growth of the Coli-Aerogenes Group in the Presence of Isocitrate. J Bacteriol. 1948 Jul;56(1):89–90. [PMC free article] [PubMed] [Google Scholar]
  20. LARA F. J. S., STOKES J. L. Oxidation of citrate by Escherichia coli. J Bacteriol. 1952 Mar;63(3):415–420. doi: 10.1128/jb.63.3.415-420.1952. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. OCHOA S., STERN J. R. Carbohydrate metabolism. Annu Rev Biochem. 1952;21:547–602. doi: 10.1146/annurev.bi.21.070152.002555. [DOI] [PubMed] [Google Scholar]
  22. PINSKY M. J., STOKES J. L. Requirements for formic hydrogenlyase adaptation in nonproliferating suspensions of escherichia coli. J Bacteriol. 1952 Aug;64(2):151–161. doi: 10.1128/jb.64.2.151-161.1952. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. SANADI D. R., LITTLEFIELD J. W., BOCK R. M. Studies on alpha-ketoglutaric oxidase. II. Purification and properties. J Biol Chem. 1952 May;197(2):851–862. [PubMed] [Google Scholar]
  24. SGUROS P. L., HARTSELL S. E. Aerobic glucose dissimilation by achromobacter species. II. Indications of intermediate pathways. J Bacteriol. 1952 Dec;64(6):821–827. doi: 10.1128/jb.64.6.821-827.1952. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. STANIER R. Y. Enzymatic adaptation in bacteria. Annu Rev Microbiol. 1951;5:35–56. doi: 10.1146/annurev.mi.05.100151.000343. [DOI] [PubMed] [Google Scholar]
  26. STERN J. R., SHAPIRO B., OCHOA S. Synthesis and breakdown of citric acid with crystalline condensing enzyme. Nature. 1950 Sep 2;166(4218):403–404. doi: 10.1038/166403b0. [DOI] [PubMed] [Google Scholar]
  27. STONE R. W., WILSON P. W. Respiratory activity of cell-free extracts from azotobacter. J Bacteriol. 1952 May;63(5):605–617. doi: 10.1128/jb.63.5.605-617.1952. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. STONE R. W., WILSON P. W. The effect of oxalacetate on the oxidation of succinate by azotobacter extracts. J Bacteriol. 1952 May;63(5):619–622. doi: 10.1128/jb.63.5.619-622.1952. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Stanier R. Y. Simultaneous Adaptation: A New Technique for the Study of Metabolic Pathways. J Bacteriol. 1947 Sep;54(3):339–348. doi: 10.1128/jb.54.3.339-348.1947. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. VAUGHN R. H., OSBORNE J. T., WEDDING G. T., TABACHNICK J., BEISEL C. G., BRAXTON T. The utilization of citrate by Escherichia coli. J Bacteriol. 1950 Aug;60(2):119–127. doi: 10.1128/jb.60.2.119-127.1950. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. WOOD H. G. A study of carbon dioxide fixation by mass determination of the types of C13-acetate. J Biol Chem. 1952 Feb;194(2):905–931. [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES