Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1989 Apr 11;17(7):2693–2704. doi: 10.1093/nar/17.7.2693

Alpha-DNA VIII: thermodynamic parameters of complexes formed between the oligo-alpha-deoxynucleotides: alpha-d(GGAAGG) and alpha-d(CCTTCC) and their complementary oligo-beta-deoxynucleotides: beta-d(CCTTCC) and beta-d(GGAAGG) are different.

J Paoletti 1, D Bazile 1, F Morvan 1, J L Imbach 1, C Paoletti 1
PMCID: PMC317651  PMID: 2717407

Abstract

The temperature dependence of the formation of a complex between an alpha-d(CCTTCC) hexanucleotide and its complementary beta-d(GGAAGG) sequence was studied and compared to the formation of the beta-d(CCTTCC):beta-d(GGAAGG) complex. Such alpha-beta complex is more stable than the regular beta:beta complex. The Tm value for the alpha:beta complex is 28 degrees C (delta G degrees = -7.3 kcal/mole) while Tm = 20, 1 degree C (delta G degrees = -6.3 kcal/mole) for the beta:beta complex. The stoechiometry of the alpha:beta complex corresponds to the formation of a 1:1 duplex. However, when the alpha- strand is made of alpha-purines: alpha-d(GGAAGG), the stability of the alpha:beta complex, alpha-d(GGAAGG):beta-d(CCTTCC) is found to be lower (Tm = 13.8 degrees C) than the stability of the regular beta-beta complex, leading to the conclusion that the nature of the alpha-sequence is important in terms of stability when considering the synthesis of such a sequence for using it as antisense oligonucleotide.

Full text

PDF
2693

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albergo D. D., Marky L. A., Breslauer K. J., Turner D. H. Thermodynamics of (dG--dC)3 double-helix formation in water and deuterium oxide. Biochemistry. 1981 Mar 17;20(6):1409–1413. doi: 10.1021/bi00509a001. [DOI] [PubMed] [Google Scholar]
  2. Appleby D. W., Kallenbach N. R. Theory of oligonucleotide stabilization. I. The effect of single-strand stacking. Biopolymers. 1973;12(9):2093–2120. doi: 10.1002/bip.1973.360120915. [DOI] [PubMed] [Google Scholar]
  3. Breslauer K. J., Frank R., Blöcker H., Marky L. A. Predicting DNA duplex stability from the base sequence. Proc Natl Acad Sci U S A. 1986 Jun;83(11):3746–3750. doi: 10.1073/pnas.83.11.3746. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Breslauer K. J., Sturtevant J. M., Tinoco I., Jr Calorimetric and spectroscopic investigation of the helix-to-coil transition of a ribo-oligonucleotide: rA7U7. J Mol Biol. 1975 Dec 25;99(4):549–565. doi: 10.1016/s0022-2836(75)80171-9. [DOI] [PubMed] [Google Scholar]
  5. Durand M., Maurizot J. C., Thuong N. T., Helene C. Circular dichroism studies of an oligo-alpha-thymidylate and of its interactions with complementary sequences. Nucleic Acids Res. 1988 Jun 10;16(11):5039–5053. doi: 10.1093/nar/16.11.5039. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gautier C., Bazile D., Paoletti J. Poly(rA) binding of alpha-anomeric and beta-anomeric tetrathymidylates covalently linked to an intercalating oxazolopyridocarbazolium. Determination of the binding parameters. Biochem Biophys Res Commun. 1988 Jul 15;154(1):252–257. doi: 10.1016/0006-291x(88)90677-8. [DOI] [PubMed] [Google Scholar]
  7. Gautier C., Morvan F., Rayner B., Huynh-Dinh T., Igolen J., Imbach J. L., Paoletti C., Paoletti J. Alpha-DNA. IV: Alpha-anomeric and beta-anomeric tetrathymidylates covalently linked to intercalating oxazolopyridocarbazole. Synthesis, physicochemical properties and poly (rA) binding. Nucleic Acids Res. 1987 Aug 25;15(16):6625–6641. doi: 10.1093/nar/15.16.6625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Helene C., Thuong N. T. Oligo-[alpha]-deoxynucleotides covalently linked to intercalating agents. DNA and RNA binding properties. Biochem Pharmacol. 1988 May 1;37(9):1797–1798. doi: 10.1016/0006-2952(88)90451-0. [DOI] [PubMed] [Google Scholar]
  9. Lancelot G., Guesnet J. L., Roig V., Thuong N. T. 2D-NMR studies of the unnatural duplex alpha-d(TCTAAAC)-beta-d(AGATTTG). Nucleic Acids Res. 1987 Sep 25;15(18):7531–7547. doi: 10.1093/nar/15.18.7531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Morvan F., Rayner B., Imbach J. L., Chang D. K., Lown J. W. alpha-DNA-III. Characterization by high field 1H-NMR, anti-parallel self-recognition and conformation of the unnatural hexadeoxyribonucleotides alpha-[d(CpApTpGpCpG)] and alpha-[d(CpGpCpApTpG)]. Alpha-oligodeoxynucleotides as potential cellular probes for gene control. Nucleic Acids Res. 1987 May 26;15(10):4241–4255. doi: 10.1093/nar/15.10.4241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Morvan F., Rayner B., Imbach J. L., Chang D. K., Lown J. W. alpha-DNA. I. Synthesis, characterization by high field 1H-NMR, and base-pairing properties of the unnatural hexadeoxyribonucleotide alpha-[d(CpCpTpTpCpC)] with its complement beta-[d(GpGpApApGpG)]. Nucleic Acids Res. 1986 Jun 25;14(12):5019–5035. doi: 10.1093/nar/14.12.5019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Morvan F., Rayner B., Imbach J. L., Lee M., Hartley J. A., Chang D. K., Lown J. W. alpha-DNA-V. Parallel annealing, handedness and conformation of the duplex of the unnatural alpha-hexadeoxyribonucleotide alpha-[d(CpApTpGpCpG)] with its beta-complement beta-[d(GpTpApCpGpC)] deduced from high field 1H-NMR. Nucleic Acids Res. 1987 Sep 11;15(17):7027–7044. doi: 10.1093/nar/15.17.7027. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Morvan F., Rayner B., Imbach J. L., Thenet S., Bertrand J. R., Paoletti J., Malvy C., Paoletti C. alpha-DNA II. Synthesis of unnatural alpha-anomeric oligodeoxyribonucleotides containing the four usual bases and study of their substrate activities for nucleases. Nucleic Acids Res. 1987 Apr 24;15(8):3421–3437. doi: 10.1093/nar/15.8.3421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Morvan F., Rayner B., Leonetti J. P., Imbach J. L. alpha-DNA. VII. Solid phase synthesis of alpha-anomeric oligodeoxyribonucleotides. Nucleic Acids Res. 1988 Feb 11;16(3):833–847. doi: 10.1093/nar/16.3.833. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Petersheim M., Turner D. H. Base-stacking and base-pairing contributions to helix stability: thermodynamics of double-helix formation with CCGG, CCGGp, CCGGAp, ACCGGp, CCGGUp, and ACCGGUp. Biochemistry. 1983 Jan 18;22(2):256–263. doi: 10.1021/bi00271a004. [DOI] [PubMed] [Google Scholar]
  16. Praseuth D., Chassignol M., Takasugi M., Le Doan T., Thuong N. T., Hélène C. Double helices with parallel strands are formed by nuclease-resistant oligo-[alpha]-deoxynucleotides and oligo-[alpha]-deoxynucleotides covalently linked to an intercalating agent with complementary oligo-[beta]-deoxynucleotides. J Mol Biol. 1987 Aug 20;196(4):939–942. doi: 10.1016/0022-2836(87)90416-5. [DOI] [PubMed] [Google Scholar]
  17. Thuong N. T., Asseline U., Roig V., Takasugi M., Hélène C. Oligo(alpha-deoxynucleotide)s covalently linked to intercalating agents: differential binding to ribo- and deoxyribopolynucleotides and stability towards nuclease digestion. Proc Natl Acad Sci U S A. 1987 Aug;84(15):5129–5133. doi: 10.1073/pnas.84.15.5129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Zerial A., Thuong N. T., Hélène C. Selective inhibition of the cytopathic effect of type A influenza viruses by oligodeoxynucleotides covalently linked to an intercalating agent. Nucleic Acids Res. 1987 Dec 10;15(23):9909–9919. doi: 10.1093/nar/15.23.9909. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES