Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1989 Apr 11;17(7):2835–2848. doi: 10.1093/nar/17.7.2835

Glucocorticoid and estrogen regulation of a rat T-kininogen gene.

K P Anderson 1, J B Lingrel 1
PMCID: PMC317660  PMID: 2541413

Abstract

We have examined the regulation of a rat T-kininogen gene by glucocorticoid and estrogen. Expression of the endogenous gene in a rat hepatoma cell line is increased 5-fold and 2-fold in response to dexamethasone and 17 beta-estradiol-3-benzoate, respectively. Various deletion constructs of the 5' region of an isolated T-kininogen gene were fused to a chloramphenicol acetyltransferase (CAT) gene and introduced into the hepatoma cells by electroporation. Analysis of the CAT activity in cell extracts after treatment with glucocorticoid or estrogen revealed that a fragment from -167 to +52 is sufficient to confer full induction. An additional deletion in this region was unresponsive, while a larger fragment (-612 to -100) linked to a heterologous promoter did result in regulated expression. These results suggested that the sequence responsible for the hormonal response was located at -167 to -100 from the transcription start site. This 67 bp region contains a consensus for the core sequence of the glucocorticoid responsive element (GRE) and the estrogen responsive element (ERE). Interestingly these elements are located within 7 bp of each other and both sequences overlap a 16 bp palindrome that may be important in hormone receptor-DNA recognition.

Full text

PDF
2835

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson K. P., Heath E. C. The relationship between rat major acute phase protein and the kininogens. J Biol Chem. 1985 Oct 5;260(22):12065–12071. [PubMed] [Google Scholar]
  2. Anderson K. P., Martin A. D., Heath E. C. Rat major acute-phase protein: biosynthesis and characterization of cDNA clone. Arch Biochem Biophys. 1984 Sep;233(2):624–635. doi: 10.1016/0003-9861(84)90488-0. [DOI] [PubMed] [Google Scholar]
  3. Baumann H., Firestone G. L., Burgess T. L., Gross K. W., Yamamoto K. R., Held W. A. Dexamethasone regulation of alpha 1-acid glycoprotein and other acute phase reactants in rat liver and hepatoma cells. J Biol Chem. 1983 Jan 10;258(1):563–570. [PubMed] [Google Scholar]
  4. Birch H. E., Schreiber G. Transcriptional regulation of plasma protein synthesis during inflammation. J Biol Chem. 1986 Jun 25;261(18):8077–8080. [PubMed] [Google Scholar]
  5. Boyd A. E., 3rd, Reichlin S. Neural control of prolactin secretion in man. Psychoneuroendocrinology. 1978 Apr;3(2):113–130. doi: 10.1016/0306-4530(78)90001-x. [DOI] [PubMed] [Google Scholar]
  6. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  7. Esnard F., Gauthier F. Rat alpha 1-cysteine proteinase inhibitor. An acute phase reactant identical with alpha 1 acute phase globulin. J Biol Chem. 1983 Oct 25;258(20):12443–12447. [PubMed] [Google Scholar]
  8. Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
  9. Fung W. P., Schreiber G. Structure and expression of the genes for major acute phase alpha 1-protein (thiostatin) and kininogen in the rat. J Biol Chem. 1987 Jul 5;262(19):9298–9308. [PubMed] [Google Scholar]
  10. Furuto-Kato S., Matsumoto A., Kitamura N., Nakanishi S. Primary structures of the mRNAs encoding the rat precursors for bradykinin and T-kinin. Structural relationship of kininogens with major acute phase protein and alpha 1-cysteine proteinase inhibitor. J Biol Chem. 1985 Oct 5;260(22):12054–12059. [PubMed] [Google Scholar]
  11. Gorman C. M., Moffat L. F., Howard B. H. Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells. Mol Cell Biol. 1982 Sep;2(9):1044–1051. doi: 10.1128/mcb.2.9.1044. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kageyama R., Kitamura N., Ohkubo H., Nakanishi S. Differential expression of the multiple forms of rat prekininogen mRNAs after acute inflammation. J Biol Chem. 1985 Oct 5;260(22):12060–12064. [PubMed] [Google Scholar]
  13. Martinez E., Givel F., Wahli W. The estrogen-responsive element as an inducible enhancer: DNA sequence requirements and conversion to a glucocorticoid-responsive element. EMBO J. 1987 Dec 1;6(12):3719–3727. doi: 10.1002/j.1460-2075.1987.tb02706.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Oh-ishi S., Hayashi I., Kusunoki A., Nagashima Y., Hayashi M., Yamaki K., Utsunomiya I., Yamasu A. Developmental and sexual differences of T-kininogen levels in rat plasma and liver. Biochem Biophys Res Commun. 1988 Feb 15;150(3):1069–1076. doi: 10.1016/0006-291x(88)90738-3. [DOI] [PubMed] [Google Scholar]
  15. Okamoto H., Greenbaum L. M. Isolation and structure of T-kinin. Biochem Biophys Res Commun. 1983 Apr 29;112(2):701–708. doi: 10.1016/0006-291x(83)91519-x. [DOI] [PubMed] [Google Scholar]
  16. Perlmutter D. H., Dinarello C. A., Punsal P. I., Colten H. R. Cachectin/tumor necrosis factor regulates hepatic acute-phase gene expression. J Clin Invest. 1986 Nov;78(5):1349–1354. doi: 10.1172/JCI112721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Prowse K. R., Baumann H. Hepatocyte-stimulating factor, beta 2 interferon, and interleukin-1 enhance expression of the rat alpha 1-acid glycoprotein gene via a distal upstream regulatory region. Mol Cell Biol. 1988 Jan;8(1):42–51. doi: 10.1128/mcb.8.1.42. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Schüle R., Muller M., Otsuka-Murakami H., Renkawitz R. Cooperativity of the glucocorticoid receptor and the CACCC-box binding factor. Nature. 1988 Mar 3;332(6159):87–90. doi: 10.1038/332087a0. [DOI] [PubMed] [Google Scholar]
  19. Strähle U., Klock G., Schütz G. A DNA sequence of 15 base pairs is sufficient to mediate both glucocorticoid and progesterone induction of gene expression. Proc Natl Acad Sci U S A. 1987 Nov;84(22):7871–7875. doi: 10.1073/pnas.84.22.7871. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Urban J., Chan D., Schreiber G. A rat serum glycoprotein whose synthesis rate increases greatly during inflammation. J Biol Chem. 1979 Nov 10;254(21):10565–10568. [PubMed] [Google Scholar]
  21. Walker P., Germond J. E., Brown-Luedi M., Givel F., Wahli W. Sequence homologies in the region preceding the transcription initiation site of the liver estrogen-responsive vitellogenin and apo-VLDLII genes. Nucleic Acids Res. 1984 Nov 26;12(22):8611–8626. doi: 10.1093/nar/12.22.8611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. von der Ahe D., Janich S., Scheidereit C., Renkawitz R., Schütz G., Beato M. Glucocorticoid and progesterone receptors bind to the same sites in two hormonally regulated promoters. Nature. 1985 Feb 21;313(6004):706–709. doi: 10.1038/313706a0. [DOI] [PubMed] [Google Scholar]
  23. von der Ahe D., Renoir J. M., Buchou T., Baulieu E. E., Beato M. Receptors for glucocorticosteroid and progesterone recognize distinct features of a DNA regulatory element. Proc Natl Acad Sci U S A. 1986 May;83(9):2817–2821. doi: 10.1073/pnas.83.9.2817. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. von der Ahe D., Renoir J. M., Buchou T., Baulieu E. E., Beato M. Receptors for glucocorticosteroid and progesterone recognize distinct features of a DNA regulatory element. Proc Natl Acad Sci U S A. 1986 May;83(9):2817–2821. doi: 10.1073/pnas.83.9.2817. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES