Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1989 Jun 12;17(11):4359–4365. doi: 10.1093/nar/17.11.4359

Pulsed-field gel electrophoresis of circular DNA.

J S Simske 1, S Scherer 1
PMCID: PMC317940  PMID: 2662139

Abstract

Mobility of supercoiled (form I) and nicked circular (form II) plasmid DNAs was determined on two major forms of pulsed-field electrophoresis, CHEF and OFAGE. Plasmids with molecular lengths ranging from 2.30 to 17.8 kilobase pairs (kb) were used with Saccharomyces cerevisiae chromosomes as standards. Agarose gel concentrations were varied from 0.3 to 2.0 percent, with higher percentage gels resolving forms I and II of smaller plasmids. The pulsing range of 3.7 to 240 seconds resulted in quite variable Saccharomyces chromosomal mobilities on both 0.5 and 1.0 percent gels, while both form I and II of all plasmid DNAs showed relatively constant mobilities with some increase at the shortest pulse times. Using a 30 second pulse time and gel concentrations of at least 1.0 percent, the usual order of migration of plasmid forms for a 17.8 kb plasmid could be changed. We interpret this result as an increase in the relative mobility of form II in our pulsed-field gel conditions.

Full text

PDF
4359

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beverley S. M. Characterization of the 'unusual' mobility of large circular DNAs in pulsed field-gradient electrophoresis. Nucleic Acids Res. 1988 Feb 11;16(3):925–939. doi: 10.1093/nar/16.3.925. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Carle G. F., Frank M., Olson M. V. Electrophoretic separations of large DNA molecules by periodic inversion of the electric field. Science. 1986 Apr 4;232(4746):65–68. doi: 10.1126/science.3952500. [DOI] [PubMed] [Google Scholar]
  3. Carle G. F., Olson M. V. Separation of chromosomal DNA molecules from yeast by orthogonal-field-alternation gel electrophoresis. Nucleic Acids Res. 1984 Jul 25;12(14):5647–5664. doi: 10.1093/nar/12.14.5647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chu G., Vollrath D., Davis R. W. Separation of large DNA molecules by contour-clamped homogeneous electric fields. Science. 1986 Dec 19;234(4783):1582–1585. doi: 10.1126/science.3538420. [DOI] [PubMed] [Google Scholar]
  5. Hightower R. C., Metge D. W., Santi D. V. Plasmid migration using orthogonal-field-alternation gel electrophoresis. Nucleic Acids Res. 1987 Oct 26;15(20):8387–8398. doi: 10.1093/nar/15.20.8387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Levene S. D., Zimm B. H. Separations of open-circular DNA using pulsed-field electrophoresis. Proc Natl Acad Sci U S A. 1987 Jun;84(12):4054–4057. doi: 10.1073/pnas.84.12.4054. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Mickel S., Arena V., Jr, Bauer W. Physical properties and gel electrophoresis behavior of R12-derived plasmid DNAs. Nucleic Acids Res. 1977;4(5):1465–1482. doi: 10.1093/nar/4.5.1465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Schwartz D. C., Cantor C. R. Separation of yeast chromosome-sized DNAs by pulsed field gradient gel electrophoresis. Cell. 1984 May;37(1):67–75. doi: 10.1016/0092-8674(84)90301-5. [DOI] [PubMed] [Google Scholar]
  9. van der Bliek A. M., Lincke C. R., Borst P. Circular DNA of 3T6R50 double minute chromosomes. Nucleic Acids Res. 1988 Jun 10;16(11):4841–4851. doi: 10.1093/nar/16.11.4841. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES