Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1989 Jul 11;17(13):5071–5079. doi: 10.1093/nar/17.13.5071

Nucleotide sequence, genomic organization and evolution of a major repetitive DNA family in tilapia (Oreochromis mossambicus/hornorum).

J M Wright 1
PMCID: PMC318095  PMID: 2762120

Abstract

A highly repetitive DNA sequence from tilapia (Oreochromis mossambicus/hornorum) has been cloned and sequenced. It is a tandemly arrayed sequence of 237 bp and constitutes 7% of the fish genome. The copy number of the repeat is approximately 3 x 10(5) per haploid genome. DNA sequence analysis of 7 cloned repeats revealed a high degree of conservation of the monomeric unit. Within the monomeric unit, a 9 bp AT rich motif is regularly spaced approximately 30 bp apart and may represent the progenitor of the amplified sequence. One cloned repeat, Ti-14, contained a 30 bp deletion at a position flanked by a 7 bp direct repeat. The Ti-14 sequence appears to have been amplified independently of the major 237 bp tandem array. A higher-order repeat unit, defined by longer-range periodicities revealed by restriction endonuclease digestion, is further imposed on the tandem array.

Full text

PDF
5071

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams J. W., Kaufman R. E., Kretschmer P. J., Harrison M., Nienhuis A. W. A family of long reiterated DNA sequences, one copy of which is next to the human beta globin gene. Nucleic Acids Res. 1980 Dec 20;8(24):6113–6128. doi: 10.1093/nar/8.24.6113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Arnason U., Höglund M., Widegren B. Conservation of highly repetitive DNA in cetaceans. Chromosoma. 1984;89(3):238–242. doi: 10.1007/BF00295005. [DOI] [PubMed] [Google Scholar]
  3. Britten R. J., Kohne D. E. Repeated sequences in DNA. Hundreds of thousands of copies of DNA sequences have been incorporated into the genomes of higher organisms. Science. 1968 Aug 9;161(3841):529–540. doi: 10.1126/science.161.3841.529. [DOI] [PubMed] [Google Scholar]
  4. Brutlag D. L. Molecular arrangement and evolution of heterochromatic DNA. Annu Rev Genet. 1980;14:121–144. doi: 10.1146/annurev.ge.14.120180.001005. [DOI] [PubMed] [Google Scholar]
  5. Dagert M., Ehrlich S. D. Prolonged incubation in calcium chloride improves the competence of Escherichia coli cells. Gene. 1979 May;6(1):23–28. doi: 10.1016/0378-1119(79)90082-9. [DOI] [PubMed] [Google Scholar]
  6. Datta U., Dutta P., Mandal R. K. Cloning and characterization of a highly repetitive fish nucleotide sequence. Gene. 1988;62(2):331–336. doi: 10.1016/0378-1119(88)90570-7. [DOI] [PubMed] [Google Scholar]
  7. Doolittle W. F., Sapienza C. Selfish genes, the phenotype paradigm and genome evolution. Nature. 1980 Apr 17;284(5757):601–603. doi: 10.1038/284601a0. [DOI] [PubMed] [Google Scholar]
  8. Gruenbaum Y., Cedar H., Razin A. Restriction enzyme digestion of hemimethylated DNA. Nucleic Acids Res. 1981 Jun 11;9(11):2509–2515. doi: 10.1093/nar/9.11.2509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hummel S., Meyerhof W., Korge E., Knöchel W. Characterization of highly and moderately repetitive 500 bp Eco RI fragments from Xenopus laevis DNA. Nucleic Acids Res. 1984 Jun 25;12(12):4921–4938. doi: 10.1093/nar/12.12.4921. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hörz W., Altenburger W. Nucleotide sequence of mouse satellite DNA. Nucleic Acids Res. 1981 Feb 11;9(3):683–696. doi: 10.1093/nar/9.3.683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Jørgensen A. L., Bostock C. J., Bak A. L. Chromosome-specific subfamilies within human alphoid repetitive DNA. J Mol Biol. 1986 Jan 20;187(2):185–196. doi: 10.1016/0022-2836(86)90227-5. [DOI] [PubMed] [Google Scholar]
  12. Kessler C., Höltke H. J. Specificity of restriction endonucleases and methylases--a review. Gene. 1986;47(1):1–153. doi: 10.1016/0378-1119(86)90245-3. [DOI] [PubMed] [Google Scholar]
  13. Messing J. New M13 vectors for cloning. Methods Enzymol. 1983;101:20–78. doi: 10.1016/0076-6879(83)01005-8. [DOI] [PubMed] [Google Scholar]
  14. Mitchell A. R., Gosden J. R., Miller D. A. A cloned sequence, p82H, of the alphoid repeated DNA family found at the centromeres of all human chromosomes. Chromosoma. 1985;92(5):369–377. doi: 10.1007/BF00327469. [DOI] [PubMed] [Google Scholar]
  15. Novak U. Structure and properties of a highly repetitive DNA sequence in sheep. Nucleic Acids Res. 1984 Mar 12;12(5):2343–2350. doi: 10.1093/nar/12.5.2343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Orgel L. E., Crick F. H. Selfish DNA: the ultimate parasite. Nature. 1980 Apr 17;284(5757):604–607. doi: 10.1038/284604a0. [DOI] [PubMed] [Google Scholar]
  17. Razin A., Riggs A. D. DNA methylation and gene function. Science. 1980 Nov 7;210(4470):604–610. doi: 10.1126/science.6254144. [DOI] [PubMed] [Google Scholar]
  18. Rigby P. W., Dieckmann M., Rhodes C., Berg P. Labeling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase I. J Mol Biol. 1977 Jun 15;113(1):237–251. doi: 10.1016/0022-2836(77)90052-3. [DOI] [PubMed] [Google Scholar]
  19. Rubin C. M., Houck C. M., Deininger P. L., Friedmann T., Schmid C. W. Partial nucleotide sequence of the 300-nucleotide interspersed repeated human DNA sequences. Nature. 1980 Mar 27;284(5754):372–374. doi: 10.1038/284372a0. [DOI] [PubMed] [Google Scholar]
  20. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Singer M. F. Highly repeated sequences in mammalian genomes. Int Rev Cytol. 1982;76:67–112. doi: 10.1016/s0074-7696(08)61789-1. [DOI] [PubMed] [Google Scholar]
  22. Southern E. M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975 Nov 5;98(3):503–517. doi: 10.1016/s0022-2836(75)80083-0. [DOI] [PubMed] [Google Scholar]
  23. Vanyushin B. F., Tkacheva S. G., Belozersky A. N. Rare bases in animal DNA. Nature. 1970 Mar 7;225(5236):948–949. doi: 10.1038/225948a0. [DOI] [PubMed] [Google Scholar]
  24. Weiner A. M., Deininger P. L., Efstratiadis A. Nonviral retroposons: genes, pseudogenes, and transposable elements generated by the reverse flow of genetic information. Annu Rev Biochem. 1986;55:631–661. doi: 10.1146/annurev.bi.55.070186.003215. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES