Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1984 Feb 24;12(4):2081–2090. doi: 10.1093/nar/12.4.2081

Regeneration of the antiviral drug (E)-5-(2-bromovinyl)-2'-deoxyuridine in vivo.

C Desgranges, G Razaka, F Drouillet, H Bricaud, P Herdewijn, E De Clercq
PMCID: PMC318642  PMID: 6701093

Abstract

The highly potent and selective antiherpes drug BVdUrd [(E)-5-(2-bromovinyl)-2'-deoxyuridine] is cleared within 2-3 hours from the bloodstream upon intraperitoneal administration to rats. It is degraded to BVUra [(E)-5-(2-bromovinyl)uracil] and this inactive metabolite is cleared very slowly from the bloodstream so that 24 hours after the administration of BVdUrd, BVUra is still detectable in the plasma. This contrasts with several other 5-substituted uracils, i.e. 5-fluorouracil, 5-iodouracil, 5-trifluorothymine and thymine itself, which are, like their 2'-deoxyuridine counterparts FdUrd, IdUrd, F3dThd and dThd, cleared from the plasma within 2-3 hours. The injection of dThd or any of the other 5-substituted 2'-deoxyuridines at 3 hours after the injection of BVdUrd, that is at a time when BVdUrd has disappeared completely from the circulation, results in the re-apparition of BVdUrd in the plasma. Apparently, BVdUrd is regenerated from BVUra following the reaction catalyzed by pyrimidine nucleoside phosphorylases : BVUra + dThd----BVdUrd + Thy. BVdUrd can even be generated de novo if dThd (or FdUrd, IdUrd or F3dThd) are administered 3 hours after a preceding injection of BVUra. These findings represent a unique example of the (re)generation of an active drug from its inactive metabolite in vivo.

Full text

PDF
2081

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allaudeen H. S., Chen M. S., Lee J. J., De Clercq E., Prusoff W. H. Incorporation of E-5-(2-halovinyl)-2'-deoxyuridines into deoxyribonucleic acids of herpes simplex virus type 1-infected cells. J Biol Chem. 1982 Jan 25;257(2):603–606. [PubMed] [Google Scholar]
  2. Allaudeen H. S., Kozarich J. W., Bertino J. R., De Clercq E. On the mechanism of selective inhibition of herpesvirus replication by (E)-5-(2-bromovinyl)-2'-deoxyuridine. Proc Natl Acad Sci U S A. 1981 May;78(5):2698–2702. doi: 10.1073/pnas.78.5.2698. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Baker B. R., Kelley J. L. Irreversible enzyme inhibitors. 188. Inhibition of mammalian thymidine phosphorylase. J Med Chem. 1971 Sep;14(9):812–816. doi: 10.1021/jm00291a009. [DOI] [PubMed] [Google Scholar]
  4. Cheng Y. C., Dutschman G., De Clercq E., Jones A. S., Rahim S. G., Verhelst G., Walker R. T. Differential affinities of 5-(2-halogenovinyl)-2'-deoxyuridines for deoxythymidine kinases of various origins. Mol Pharmacol. 1981 Jul;20(1):230–233. [PubMed] [Google Scholar]
  5. De Clercq E., Descamps J., De Somer P., Barr P. J., Jones A. S., Walker R. T. (E)-5-(2-Bromovinyl)-2'-deoxyuridine: a potent and selective anti-herpes agent. Proc Natl Acad Sci U S A. 1979 Jun;76(6):2947–2951. doi: 10.1073/pnas.76.6.2947. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. De Clercq E., Descamps J., Verhelst G., Walker R. T., Jones A. S., Torrence P. F., Shugar D. Comparative efficacy of antiherpes drugs against different strains of herpes simplex virus. J Infect Dis. 1980 May;141(5):563–574. doi: 10.1093/infdis/141.5.563. [DOI] [PubMed] [Google Scholar]
  7. Descamps J., De Clercq E. Specific phosphorylation of E-5-(2-iodovinyl)-2'-deoxyuridine by herpes simplex virus-infected cells. J Biol Chem. 1981 Jun 25;256(12):5973–5976. [PubMed] [Google Scholar]
  8. Desgranges C., Razaka G., Rabaud M., Bricaud H., Balzarini J., De Clercq E. Phosphorolysis of (E)-5-(2-bromovinyl)-2'-deoxyuridine (BVDU) and other 5-substituted-2'-deoxyuridines by purified human thymidine phosphorylase and intact blood platelets. Biochem Pharmacol. 1983 Dec 1;32(23):3583–3590. doi: 10.1016/0006-2952(83)90307-6. [DOI] [PubMed] [Google Scholar]
  9. Desgranges C., Razaka G., Rabaud M., Bricaud H. Catabolism of thymidine in human blood platelets: purification and properties of thymidine phosphorylase. Biochim Biophys Acta. 1981 Jul 27;654(2):211–218. doi: 10.1016/0005-2787(81)90174-x. [DOI] [PubMed] [Google Scholar]
  10. Desgranges C., Razaka G., Rabaud M., Picard P., Dupuch F., Bricaud H. The human blood platelet: a cellular model to study the degradation of thymidine and its inhibition. Biochem Pharmacol. 1982 Sep 1;31(17):2755–2759. doi: 10.1016/0006-2952(82)90129-0. [DOI] [PubMed] [Google Scholar]
  11. Ensminger W. D., Frei E. High-dose intravenous and hepatic artery infusions of thymidine. Clin Pharmacol Ther. 1978 Nov;24(5):610–615. doi: 10.1002/cpt1978245610. [DOI] [PubMed] [Google Scholar]
  12. Ensminger W. D., Rosowsky A., Raso V., Levin D. C., Glode M., Come S., Steele G., Frei E., 3rd A clinical-pharmacological evaluation of hepatic arterial infusions of 5-fluoro-2'-deoxyuridine and 5-fluorouracil. Cancer Res. 1978 Nov;38(11 Pt 1):3784–3792. [PubMed] [Google Scholar]
  13. Ensminger W. D., Rosowsky A. Thymidine 5'-O-pivaloate. A prodrug derivative of thymidine with potential applications in high-dose methotrexate therapy. Biochem Pharmacol. 1979 May 1;28(9):1541–1545. doi: 10.1016/0006-2952(79)90470-2. [DOI] [PubMed] [Google Scholar]
  14. Gallo R. C., Perry S., Breitman T. R. The enzymatic mechanisms for deoxythymidine synthesis in human leukocytes. I. Substrate inhibition by thymine and activation by phosphate or arsenate. J Biol Chem. 1967 Nov 10;242(21):5059–5068. [PubMed] [Google Scholar]
  15. Hartwick R. A., Brown P. R. Evaluation of microparticle chemically bonded reversed-phase packings in the high-pressure liquid chromatographic analysis of nucleosides and their bases. J Chromatogr. 1976 Nov 3;126:679–691. doi: 10.1016/s0021-9673(01)84111-x. [DOI] [PubMed] [Google Scholar]
  16. Khym J. X. An analytical system for rapid separation of tissue nucleotides at low pressures on conventional anion exchangers. Clin Chem. 1975 Aug;21(9):1245–1252. [PubMed] [Google Scholar]
  17. Krenitsky T. A. Pentosyl transfer mechanisms of the mammalian nucleoside phosphorylases. J Biol Chem. 1968 Jun 10;243(11):2871–2875. [PubMed] [Google Scholar]
  18. Langen P., Etzold G., Bärwolff D., Preussel B. Inhibition of thymidine phosphorylase by 6-aminothymine and derivatives of 6-aminouracil. Biochem Pharmacol. 1967 Sep 9;16(9):1833–1837. doi: 10.1016/0006-2952(67)90260-2. [DOI] [PubMed] [Google Scholar]
  19. Mancini W. R., De Clercq E., Prusoff W. H. The relationship between incorporation of E-5-(2-Bromovinyl)-2'-deoxyuridine into herpes simplex virus type 1 DNA with virus infectivity and DNA integrity. J Biol Chem. 1983 Jan 25;258(2):792–795. [PubMed] [Google Scholar]
  20. Maudgal P. C., Dralands L., Lamberts L., De Clercq E., Descamps J., Missotten L. Preliminary results of oral BVDU treatment of herpes zoster ophthalmicus. Bull Soc Belge Ophtalmol. 1981;193:49–56. [PubMed] [Google Scholar]
  21. Maudgal P. C., Missotten L., De Clercq E., Descamps J., De Meuter E. Efficacy of (E)-5-(2-bromovinyl)-2'-deoxyuridine in the topical treatment of herpes simplex keratitis. Albrecht Von Graefes Arch Klin Exp Ophthalmol. 1981;216(4):261–268. doi: 10.1007/BF00455033. [DOI] [PubMed] [Google Scholar]
  22. Rosowsky A., Wright J. E., Steele G., Kufe D. W. Thymidine 5'-O-pivaloate: evidence for prodrug action in the rat and rhesus monkey. Cancer Treat Rep. 1981 Jan-Feb;65(1-2):93–99. [PubMed] [Google Scholar]
  23. Shigeta S., Yokota T., Iwabuchi T., Baba M., Konno K., Ogata M., De Clercq E. Comparative efficacy of antiherpes drugs against various strains of varicella-zoster virus. J Infect Dis. 1983 Mar;147(3):576–584. doi: 10.1093/infdis/147.3.576. [DOI] [PubMed] [Google Scholar]
  24. Woodman P. W., Sarrif A. M., Heidelberger C. Inhibition of nucleoside phosphorylase cleavage of 5-fluoro-2'-deoxyuridine by 2,4-pyrimidinedione derivatives. Biochem Pharmacol. 1980 Apr 1;29(7):1059–1063. doi: 10.1016/0006-2952(80)90170-7. [DOI] [PubMed] [Google Scholar]
  25. de Clercq E., Degreef H., Wildiers J., de Jonge G., Drochmans A., Descamps J., de Somer P. Oral (E)-5-(2-bromovinyl)-2'-deoxyuridine in severe herpes zoster. Br Med J. 1980 Nov 1;281(6249):1178–1178. doi: 10.1136/bmj.281.6249.1178. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. de Clercq E., Descamps J., de Somer P., Barr P. J., Jones A. S., Walker R. T. Pharmacokinetics of E-5-(2-bromovinyl)-2'-deoxyuridine in mice. Antimicrob Agents Chemother. 1979 Aug;16(2):234–236. doi: 10.1128/aac.16.2.234. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES