Abstract
The structure of a 62 base nuclease resistant fragment of E. coli 5S RNA (bases 1-11, 69-87, 89-120) has been examined by small angle x-ray scattering. The results obtained are indistinguishable from those expected if this oligonucleotide complex were a perfect RNA double helix of about 30 base pairs. These results indicate that this portion of 5S RNA is in a configuration which is approximately double helical, even though proper base pairing is possible over only half its length.
Full text
PDF










Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Connors P. G., Beeman W. W. Size and shape of 5 S ribosomal RNA. J Mol Biol. 1972 Oct 28;71(1):31–37. doi: 10.1016/0022-2836(72)90398-1. [DOI] [PubMed] [Google Scholar]
- De Wachter R., Chen M. W., Vandenberghe A. Conservation of secondary structure in 5 S ribosomal RNA: a uniform model for eukaryotic, eubacterial, archaebacterial and organelle sequences is energetically favourable. Biochimie. 1982 May;64(5):311–329. doi: 10.1016/s0300-9084(82)80436-7. [DOI] [PubMed] [Google Scholar]
- Delihas N., Andersen J. Generalized structures of the 5S ribosomal RNAs. Nucleic Acids Res. 1982 Nov 25;10(22):7323–7344. doi: 10.1093/nar/10.22.7323. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Douthwaite S., Garrett R. A., Wagner R., Feunteun J. A ribonuclease-resistant region of 5S RNA and its relation to the RNA binding sites of proteins L18 and L25. Nucleic Acids Res. 1979 Jun 11;6(7):2453–2470. doi: 10.1093/nar/6.7.2453. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fox G. E., Woese C. R. 5S RNA secondary structure. Nature. 1975 Aug 7;256(5517):505–507. doi: 10.1038/256505a0. [DOI] [PubMed] [Google Scholar]
- Kime M. J., Moore P. B. Nuclear Overhauser experiments at 500 MHz on the downfield proton spectrum of a ribonuclease-resistant fragment of 5S ribonucleic acid. Biochemistry. 1983 May 24;22(11):2615–2622. doi: 10.1021/bi00280a004. [DOI] [PubMed] [Google Scholar]
- McDonald R. C., Steitz T. A., Engelman D. M. Yeast hexokinase in solution exhibits a large conformational change upon binding glucose or glucose 6-phosphate. Biochemistry. 1979 Jan 23;18(2):338–342. doi: 10.1021/bi00569a017. [DOI] [PubMed] [Google Scholar]
- Monier R., Feunteun J., Forget B., Jordan B., Reynier M., Varricchio F. 5 S RNA and the assembly of bacterial ribosomes. Cold Spring Harb Symp Quant Biol. 1969;34:139–148. doi: 10.1101/sqb.1969.034.01.020. [DOI] [PubMed] [Google Scholar]
- Moore P. B., Kime M. J., Leontis N. B., Abdel-Meguid S. S. Physical studies on a nucleoprotein from the ribosome of E. coli. J Biomol Struct Dyn. 1983 Oct;1(2):383–394. doi: 10.1080/07391102.1983.10507449. [DOI] [PubMed] [Google Scholar]
- Müller J. J., Welfle H., Damaschun G., Bielka H. A small-angle and wide-angle x-ray scattering study of the shape and secondary structure of native 5 S RNA from rat liver ribosomes. Biochim Biophys Acta. 1981 Jun 26;654(1):156–165. doi: 10.1016/0005-2787(81)90149-0. [DOI] [PubMed] [Google Scholar]
- Osterberg R., Sjöberg B., Garrett R. A. Molecular model for 5-S RNA. A small-angle x-ray scattering study of native, denatured and aggregated 5-S RNA from Escherichia coli ribosomes. Eur J Biochem. 1976 Sep 15;68(2):481–487. doi: 10.1111/j.1432-1033.1976.tb10835.x. [DOI] [PubMed] [Google Scholar]
- Richards F. M. Areas, volumes, packing and protein structure. Annu Rev Biophys Bioeng. 1977;6:151–176. doi: 10.1146/annurev.bb.06.060177.001055. [DOI] [PubMed] [Google Scholar]
- Stahl D. A., Luehrsen K. R., Woese C. R., Pace N. R. An unusual 5S rRNA, from Sulfolobus acidocaldarius, and its implications for a general 5S rRNA structure. Nucleic Acids Res. 1981 Nov 25;9(22):6129–6137. doi: 10.1093/nar/9.22.6129. [DOI] [PMC free article] [PubMed] [Google Scholar]
