Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1984 Jun 11;12(11):4517–4529. doi: 10.1093/nar/12.11.4517

Analysis of the mouse gamma-crystallin gene family: assignment of multiple cDNAs to discrete genomic sequences and characterization of a representative gene.

S Lok, L C Tsui, T Shinohara, J Piatigorsky, R Gold, M Breitman
PMCID: PMC318855  PMID: 6330674

Abstract

Blot hybridization analysis of mouse DNA with gamma-crystallin-specific cDNAs has detected the presence of a multigene family comprised of at least four related genes. The detailed structure of one of these genes, mouse gamma 4-crystallin (M gamma 4.1), and its corresponding cDNA has been determined. The gene spans approximately 2.6 kilobases (kb) and contains two introns. The gene predicts a polypeptide of 174 amino acids that shares extensive sequence homology with gamma-crystallin polypeptides of other species. The two similar structural domains of the protein correspond exactly to the second and third exons of the gene, supporting an exon-duplication model of gene evolution. The similarity in structure of this gene to that recently reported for a gamma-crystallin gene of the rat (1) suggests that a common structure may exist for all gamma-crystallin genes of the two species. Moreover, a highly conserved region, 50 nucleotides in length, immediately precedes the TATA box of both the mouse and rat genes, suggesting that this sequence may be important in gene regulation.

Full text

PDF
4517

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Benoist C., O'Hare K., Breathnach R., Chambon P. The ovalbumin gene-sequence of putative control regions. Nucleic Acids Res. 1980 Jan 11;8(1):127–142. doi: 10.1093/nar/8.1.127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Benton W. D., Davis R. W. Screening lambdagt recombinant clones by hybridization to single plaques in situ. Science. 1977 Apr 8;196(4286):180–182. doi: 10.1126/science.322279. [DOI] [PubMed] [Google Scholar]
  3. Bloemendal H. The vertebrate eye lens. Science. 1977 Jul 8;197(4299):127–138. doi: 10.1126/science.877544. [DOI] [PubMed] [Google Scholar]
  4. Blundell T., Lindley P., Miller L., Moss D., Slingsby C., Tickle I., Turnell B., Wistow G. The molecular structure and stability of the eye lens: x-ray analysis of gamma-crystallin II. Nature. 1981 Feb 26;289(5800):771–777. doi: 10.1038/289771a0. [DOI] [PubMed] [Google Scholar]
  5. Breathnach R., Benoist C., O'Hare K., Gannon F., Chambon P. Ovalbumin gene: evidence for a leader sequence in mRNA and DNA sequences at the exon-intron boundaries. Proc Natl Acad Sci U S A. 1978 Oct;75(10):4853–4857. doi: 10.1073/pnas.75.10.4853. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Breitman M. L., Tsui L. C., Buchwald M., Siminovitch L. Introduction and recovery of a selectable bacterial gene from the genome of mammalian cells. Mol Cell Biol. 1982 Aug;2(8):966–976. doi: 10.1128/mcb.2.8.966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Croft L. R. Amino and carboxy terminal sequence of -crystallin, from haddock lens. Biochim Biophys Acta. 1973 Jan 25;295(1):174–177. doi: 10.1016/0005-2795(73)90085-8. [DOI] [PubMed] [Google Scholar]
  8. Croft L. R. The amino acid sequence of -crystallin (fraction II) from calf lens. Biochem J. 1972 Jul;128(4):961–970. doi: 10.1042/bj1280961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dodemont H. J., Andreoli P. M., Moormann R. J., Ramaekers F. C., Schoenmakers J. G., Bloemendal H. Molecular cloning of mRNA sequences encoding rat lens crystallins. Proc Natl Acad Sci U S A. 1981 Sep;78(9):5320–5324. doi: 10.1073/pnas.78.9.5320. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Efstratiadis A., Posakony J. W., Maniatis T., Lawn R. M., O'Connell C., Spritz R. A., DeRiel J. K., Forget B. G., Weissman S. M., Slightom J. L. The structure and evolution of the human beta-globin gene family. Cell. 1980 Oct;21(3):653–668. doi: 10.1016/0092-8674(80)90429-8. [DOI] [PubMed] [Google Scholar]
  11. Garber A. T., Stirk L., Gold R. J. Abnormalities of crystallins in the lens of the CatFraser mouse. Exp Eye Res. 1983 Feb;36(2):165–169. doi: 10.1016/0014-4835(83)90002-7. [DOI] [PubMed] [Google Scholar]
  12. Harding J. J., Dilley K. J. Structural proteins of the mammalian lens: a review with emphasis on changes in development, aging and cataract. Exp Eye Res. 1976 Jan;22(1):1–73. doi: 10.1016/0014-4835(76)90033-6. [DOI] [PubMed] [Google Scholar]
  13. Loenen W. A., Brammar W. J. A bacteriophage lambda vector for cloning large DNA fragments made with several restriction enzymes. Gene. 1980 Aug;10(3):249–259. doi: 10.1016/0378-1119(80)90054-2. [DOI] [PubMed] [Google Scholar]
  14. Maxam A. M., Gilbert W. Sequencing end-labeled DNA with base-specific chemical cleavages. Methods Enzymol. 1980;65(1):499–560. doi: 10.1016/s0076-6879(80)65059-9. [DOI] [PubMed] [Google Scholar]
  15. McAvoy J. W. Cell division, cell elongation and distribution of alpha-, beta- and gamma-crystallins in the rat lens. J Embryol Exp Morphol. 1978 Apr;44:149–165. [PubMed] [Google Scholar]
  16. Moormann R. J., den Dunnen J. T., Bloemendal H., Schoenmakers J. G. Extensive intragenic sequence homology in two distinct rat lens gamma-crystallin cDNAs suggests duplications of a primordial gene. Proc Natl Acad Sci U S A. 1982 Nov;79(22):6876–6880. doi: 10.1073/pnas.79.22.6876. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Moormann R. J., den Dunnen J. T., Mulleners L., Andreoli P., Bloemendal H., Schoenmakers J. G. Strict co-linearity of genetic and protein folding domains in an intragenically duplicated rat lens gamma-crystallin gene. J Mol Biol. 1983 Dec 25;171(4):353–368. doi: 10.1016/0022-2836(83)90034-7. [DOI] [PubMed] [Google Scholar]
  18. Papaconstantinou J. Molecular aspects of lens cell differentiation. Science. 1967 Apr 21;156(3773):338–346. doi: 10.1126/science.156.3773.338. [DOI] [PubMed] [Google Scholar]
  19. Piatigorsky J. Lens differentiation in vertebrates. A review of cellular and molecular features. Differentiation. 1981;19(3):134–153. doi: 10.1111/j.1432-0436.1981.tb01141.x. [DOI] [PubMed] [Google Scholar]
  20. Shinohara T., Robinson E. A., Appella E., Piatigorsky J. Multiple gamma-crystallins of the mouse lens: fractionation of mRNAs by cDNA cloning. Proc Natl Acad Sci U S A. 1982 May;79(9):2783–2787. doi: 10.1073/pnas.79.9.2783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Skow L. C. Location of a gene controlling electrophoretic variation in mouse gamma-crystallins. Exp Eye Res. 1982 Apr;34(4):509–516. doi: 10.1016/0014-4835(82)90023-9. [DOI] [PubMed] [Google Scholar]
  22. Slingsby C., Croft L. R. Structural studies on calf lens gamma-crystallin fraction IV: a comparison of the cysteine-containing tryptic peptides with the corresponding amino acid sequence of gamma-crystallin fraction II. Exp Eye Res. 1978 Mar;26(3):291–304. doi: 10.1016/0014-4835(78)90076-3. [DOI] [PubMed] [Google Scholar]
  23. Tomarev S. I., Krayev A. S., Skryabin K. G., Bayev A. A., Gause G. G., Jr The nucleotide sequence of a cloned cDNA corresponding to one of the gamma-crystallins from the eye lens of the frog Rana temporaria. FEBS Lett. 1982 Sep 20;146(2):314–318. doi: 10.1016/0014-5793(82)80942-3. [DOI] [PubMed] [Google Scholar]
  24. Wistow G., Turnell B., Summers L., Slingsby C., Moss D., Miller L., Lindley P., Blundell T. X-ray analysis of the eye lens protein gamma-II crystallin at 1.9 A resolution. J Mol Biol. 1983 Oct 15;170(1):175–202. doi: 10.1016/s0022-2836(83)80232-0. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES