Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1984 Jun 25;12(12):5025–5036. doi: 10.1093/nar/12.12.5025

Chemical synthesis of 5-azacytidine nucleotides and preparation of tRNAs containing 5-azacytidine in its 3'-terminus.

W S Zielinski, M Sprinzl
PMCID: PMC318897  PMID: 6204276

Abstract

5-azacytidine-5'-triphosphate prepared from 5-azacytidine by chemical phosphorylation is a substrate for AMP (CMP) tRNA nucleotidyl transferase from yeast. tRNAsPhe from yeast containing 5-azacytidine in their 3'-termini were prepared enzymatically. tRNAPhe-Cpn5CpA and tRNAPhe-n5Cpn5CpA can be aminoacylated by phenylalanyl-tRNA synthetase from yeast and they are active in the poly(U)-dependent synthesis of poly(Phe) on E. coli ribosomes. The decomposition of 5-azacytidine via hydrolysis of the triazine ring is significantly accelerated by a phosphate group on the 5'-position of the nucleotide. After the incorporation of 5-azacytidine-5'-phosphate into a polynucleotide chain the rate of hydrolysis of the triazine ring decreases considerably.

Full text

PDF
5025

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bhanot O. S., Aoyagi S., Chambers R. W. Bisulfite-induced C changed to U transitions in yeast valine tRNA. J Biol Chem. 1977 Apr 25;252(8):2566–2574. [PubMed] [Google Scholar]
  2. Bhanot O. S., Chambers R. W. Bisulfite-induced C changed to U transitions in yeast alanine tRNA. J Biol Chem. 1977 Apr 25;252(8):2551–2559. [PubMed] [Google Scholar]
  3. HOARD D. E., OTT D. G. CONVERSION OF MONO- AND OLIGODEOXYRIBONUCLEOTIDES TO 5-TRIPHOSPHATES. J Am Chem Soc. 1965 Apr 20;87:1785–1788. doi: 10.1021/ja01086a031. [DOI] [PubMed] [Google Scholar]
  4. Jelenc P. C. Rapid purification of highly active ribosomes from Escherichia coli. Anal Biochem. 1980 Jul 1;105(2):369–374. doi: 10.1016/0003-2697(80)90472-8. [DOI] [PubMed] [Google Scholar]
  5. Jones P. A., Taylor S. M. Cellular differentiation, cytidine analogs and DNA methylation. Cell. 1980 May;20(1):85–93. doi: 10.1016/0092-8674(80)90237-8. [DOI] [PubMed] [Google Scholar]
  6. Lee T. T., Karon M. R. Inhibition of protein synthesis in 5-azacytidine-treated HeLa cells. Biochem Pharmacol. 1976 Aug 1;25(15):1737–1742. doi: 10.1016/0006-2952(76)90407-x. [DOI] [PubMed] [Google Scholar]
  7. Lee T. T., Momparler R. L. Enzymatic synthesis of 5-azacytidine 5'-triphosphate from 5-azacytidine. Anal Biochem. 1976 Mar;71(1):60–67. doi: 10.1016/0003-2697(76)90011-7. [DOI] [PubMed] [Google Scholar]
  8. Ley T. J., DeSimone J., Anagnou N. P., Keller G. H., Humphries R. K., Turner P. H., Young N. S., Keller P., Nienhuis A. W. 5-azacytidine selectively increases gamma-globin synthesis in a patient with beta+ thalassemia. N Engl J Med. 1982 Dec 9;307(24):1469–1475. doi: 10.1056/NEJM198212093072401. [DOI] [PubMed] [Google Scholar]
  9. McLaughlin L. W., Cramer F., Sprinzl M. Rapid analysis of modified tRNAphe from yeast by high-performance liquid chromatography: chromatography of oligonucleotides after RNase T1 digestion on aminopropylsilica and assignment of the fragments based on nucleoside analysis by chromatography on C18-silica. Anal Biochem. 1981 Mar 15;112(1):60–69. doi: 10.1016/0003-2697(81)90260-8. [DOI] [PubMed] [Google Scholar]
  10. Niwa O., Sugahara T. 5-Azacytidine induction of mouse endogenous type C virus and suppression of DNA methylation. Proc Natl Acad Sci U S A. 1981 Oct;78(10):6290–6294. doi: 10.1073/pnas.78.10.6290. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Notari R. E., DeYoung J. L. Kinetics and mechanisms of degradation of the antileukemic agent 5-azacytidine in aqueous solutions. J Pharm Sci. 1975 Jul;64(7):1148–1157. doi: 10.1002/jps.2600640704. [DOI] [PubMed] [Google Scholar]
  12. Randerath K., Tseng W. C., Harris J. S., Lu L. J. Specific effects of 5-fluoropyrimidines and 5-azapyrimidines on modification of the 5 position of pyrimidines, in particular the synthesis of 5-methyluracil and 5-methylcytosine in nucleic acids. Recent Results Cancer Res. 1983;84:283–297. doi: 10.1007/978-3-642-81947-6_22. [DOI] [PubMed] [Google Scholar]
  13. Reichman M., Penman S. The mechanism of inhibition of protein synthesis by 5-azacytidine in HeLa cells. Biochim Biophys Acta. 1973 Oct 12;324(2):282–289. doi: 10.1016/0005-2787(73)90145-7. [DOI] [PubMed] [Google Scholar]
  14. Riehl N., Remy P., Ebel J. P., Ehresmann B. Crosslinking of N-acetyl-phenylalanyl [s4U]tRNAPhe to protein S10 in the ribosomal P site. Eur J Biochem. 1982 Nov 15;128(2-3):427–433. doi: 10.1111/j.1432-1033.1982.tb06982.x. [DOI] [PubMed] [Google Scholar]
  15. Saiki J. H., McCredie K. B., Vietti T. J., Hewlett J. S., Morrison F. S., Costanzi J. J., Stuckey W. J., Whitecar J., Hoogstraten B. 5-azacytidine in acute leukemia. Cancer. 1978 Nov;42(5):2111–2114. doi: 10.1002/1097-0142(197811)42:5<2111::aid-cncr2820420505>3.0.co;2-i. [DOI] [PubMed] [Google Scholar]
  16. Schneider D., Solfert R., von der Haar F. Large scale purification of tRNA ser , tRNA tyr and tRNA phe from Baker's yeast. Hoppe Seylers Z Physiol Chem. 1972 Aug;353(8):1330–1336. doi: 10.1515/bchm2.1972.353.2.1330. [DOI] [PubMed] [Google Scholar]
  17. Schulman L. H., Goddard J. P. Loss of methionine acceptor activity resulting from a base change in the anticodon of Escherichia coli formylmethionine transfer ribonucleic acid. J Biol Chem. 1973 Feb 25;248(4):1341–1345. [PubMed] [Google Scholar]
  18. Sprinzl M., Cramer F. The -C-C-A end of tRNA and its role in protein biosynthesis. Prog Nucleic Acid Res Mol Biol. 1979;22:1–69. doi: 10.1016/s0079-6603(08)60798-9. [DOI] [PubMed] [Google Scholar]
  19. Sprinzl M., Sternbach H., von der Haar F., Cramer F. Enzymatic incorporation of ATP and CTP analogues into the 3' end of tRNA. Eur J Biochem. 1977 Dec;81(3):579–589. doi: 10.1111/j.1432-1033.1977.tb11985.x. [DOI] [PubMed] [Google Scholar]
  20. Sternbach H., von der Haar F., Schlimme E., Gaertner E., Cramer F. Isolation and properties of tRNA nucleotidyl transferase from yeast. Eur J Biochem. 1971 Sep 24;22(2):166–172. doi: 10.1111/j.1432-1033.1971.tb01528.x. [DOI] [PubMed] [Google Scholar]
  21. Thompson R. C., Karim A. M. The accuracy of protein biosynthesis is limited by its speed: high fidelity selection by ribosomes of aminoacyl-tRNA ternary complexes containing GTP[gamma S]. Proc Natl Acad Sci U S A. 1982 Aug;79(16):4922–4926. doi: 10.1073/pnas.79.16.4922. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Venolia L., Gartler S. M., Wassman E. R., Yen P., Mohandas T., Shapiro L. J. Transformation with DNA from 5-azacytidine-reactivated X chromosomes. Proc Natl Acad Sci U S A. 1982 Apr;79(7):2352–2354. doi: 10.1073/pnas.79.7.2352. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Wagner T., Sprinzl M. The complex formation between Escherichia coli aminoacyl-tRNA, elongation factor Tu and GTP. The effect of the side-chain of the amino acid linked to tRNA. Eur J Biochem. 1980;108(1):213–221. doi: 10.1111/j.1432-1033.1980.tb04714.x. [DOI] [PubMed] [Google Scholar]
  24. Yoshikawa M., Kato T., Takenishi T. A novel method for phosphorylation of nucleosides to 5'-nucleotides. Tetrahedron Lett. 1967 Dec;50:5065–5068. doi: 10.1016/s0040-4039(01)89915-9. [DOI] [PubMed] [Google Scholar]
  25. von der Haar F. Affinity elution as a purification method for aminoacyl-tRNA synthetases. Eur J Biochem. 1973 Apr 2;34(1):84–90. doi: 10.1111/j.1432-1033.1973.tb02731.x. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES