Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1984 Jul 11;12(13):5385–5404. doi: 10.1093/nar/12.13.5385

The secondary structure of oocyte and somatic 5S ribosomal RNAs of the fish Misgurnus fossilis L. from nuclease hydrolyses and chemical modification data.

T I Serenkova, A M Mazo, T D Mashkova, I Toots, A Nigul, Timofeeva MYa, L L Kisselev
PMCID: PMC318926  PMID: 6462908

Abstract

We have studied the accessibility of 5'- 32P labeled oocyte and somatic 5S rRNAs from the fish Misgurnus fossilis L. to S1, T1 and cobra venom nucleases and have found that the cleavage sites of 5S rRNAs closely related in primary structures differ in these molecules. The data of nuclease hydrolyses revealed the existence of two conformers corresponding to renatured and partially denatured somatic 5S rRNA and capable of mutual interconversions. The exposed cytosine residues were located in oocyte and somatic 5S rRNAs converted into uridine ones by sodium bisulfite treatment. The data have been used to construct the secondary structure models of somatic and oocyte 5S rRNAs by means of specially devised computer program. These models differ in their 5'-halves which contain all the nucleotide substitutions in the primary structure, all differences in location of the exposed cytosine residues, and finally, in the cleavage pattern by the nucleases used.

Full text

PDF
5385

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Auron P. E., Rindone W. P., Vary C. P., Celentano J. J., Vournakis J. N. Computer-aided prediction of RNA secondary structures. Nucleic Acids Res. 1982 Jan 11;10(1):403–419. doi: 10.1093/nar/10.1.403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barber C., Nichols J. L. Conformational studies on wheat embryo 5S RNA using nuclease S1 as a probe. Can J Biochem. 1978 May;56(5):357–364. doi: 10.1139/o78-057. [DOI] [PubMed] [Google Scholar]
  3. Brownlee G. G., Cartwright E., McShane T., Williamson R. The nucleotide sequence of somatic 5 S RNA from Xenopus laevis. FEBS Lett. 1972 Sep 1;25(1):8–12. doi: 10.1016/0014-5793(72)80442-3. [DOI] [PubMed] [Google Scholar]
  4. De Wachter R., Chen M. W., Vandenberghe A. Conservation of secondary structure in 5 S ribosomal RNA: a uniform model for eukaryotic, eubacterial, archaebacterial and organelle sequences is energetically favourable. Biochimie. 1982 May;64(5):311–329. doi: 10.1016/s0300-9084(82)80436-7. [DOI] [PubMed] [Google Scholar]
  5. Delihas N., Andersen J. Generalized structures of the 5S ribosomal RNAs. Nucleic Acids Res. 1982 Nov 25;10(22):7323–7344. doi: 10.1093/nar/10.22.7323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Denis H., Wegnez M. Biochemical research on oogenesis. Oocytes and liver cells of the teleost fish Tinca tinca contain different kinds of 5S RNA. Dev Biol. 1977 Sep;59(2):228–236. doi: 10.1016/0012-1606(77)90256-1. [DOI] [PubMed] [Google Scholar]
  7. Digweed M., Kumagai I., Pieler T., Erdmann V. A. The effect of a cytidine-to-uridine transition on the stability of Escherichia coli A19 5-S RNA. Eur J Biochem. 1982 Oct;127(3):531–537. doi: 10.1111/j.1432-1033.1982.tb06904.x. [DOI] [PubMed] [Google Scholar]
  8. Donis-Keller H., Maxam A. M., Gilbert W. Mapping adenines, guanines, and pyrimidines in RNA. Nucleic Acids Res. 1977 Aug;4(8):2527–2538. doi: 10.1093/nar/4.8.2527. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Douthwaite S., Garrett R. A. Secondary structure of prokaryotic 5S ribosomal ribonucleic acids: a study with ribonucleases. Biochemistry. 1981 Dec 8;20(25):7301–7307. doi: 10.1021/bi00528a039. [DOI] [PubMed] [Google Scholar]
  10. Engelke D. R., Ng S. Y., Shastry B. S., Roeder R. G. Specific interaction of a purified transcription factor with an internal control region of 5S RNA genes. Cell. 1980 Mar;19(3):717–728. doi: 10.1016/s0092-8674(80)80048-1. [DOI] [PubMed] [Google Scholar]
  11. Erdmann V. A., Huysmans E., Vandenberghe A., De Wachter R. Collection of published 5S and 5.8S ribosomal RNA sequences. Nucleic Acids Res. 1983 Jan 11;11(1):r105–r133. [PMC free article] [PubMed] [Google Scholar]
  12. Erdmann V. A. Structure and function of 5S and 5.8 S RNA. Prog Nucleic Acid Res Mol Biol. 1976;18:45–90. [PubMed] [Google Scholar]
  13. Fabian H., Böhm S., Welfle H., Reich P., Bielka H. Laser Raman studies of rat liver ribosomal 5 S RNA. FEBS Lett. 1981 Jan 12;123(1):19–21. doi: 10.1016/0014-5793(81)80009-9. [DOI] [PubMed] [Google Scholar]
  14. Ford P. J., Brown R. D. Sequences of 5S ribosomal RNA from Xenopus mulleri and the evolution of 5S gene-coding sequences. Cell. 1976 Aug;8(4):485–493. doi: 10.1016/0092-8674(76)90216-6. [DOI] [PubMed] [Google Scholar]
  15. Garrett R. A., Olesen S. O. Structure of eukaryotic 5S ribonucleic acid: a study of Saccharomyces cerevisiae 5S ribonucleic acid with ribonucleases. Biochemistry. 1982 Sep 14;21(19):4823–4830. doi: 10.1021/bi00262a047. [DOI] [PubMed] [Google Scholar]
  16. Hancock J., Wagner R. A structural model of 5S RNA from E. coli based on intramolecular crosslinking evidence. Nucleic Acids Res. 1982 Feb 25;10(4):1257–1269. doi: 10.1093/nar/10.4.1257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hori H., Osawa S. Evolutionary change in 5S RNA secondary structure and a phylogenic tree of 54 5S RNA species. Proc Natl Acad Sci U S A. 1979 Jan;76(1):381–385. doi: 10.1073/pnas.76.1.381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kel've M. B., Metspalu A. Kh, Lind A. Ia, Saarma M. Iu, Villems R. L. Konformatsionnye izomery 5S RNK ribosom pecheni krysy. Mol Biol (Mosk) 1978 May-Jun;12(3):695–699. [PubMed] [Google Scholar]
  19. Kime M. J., Moore P. B. NMR evidence for the existence of two native conformations of 5S RNA. Nucleic Acids Res. 1982 Aug 25;10(16):4973–4983. doi: 10.1093/nar/10.16.4973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Luehrsen K. R., Fox G. E. Secondary structure of eukaryotic cytoplasmic 5S ribosomal RNA. Proc Natl Acad Sci U S A. 1981 Apr;78(4):2150–2154. doi: 10.1073/pnas.78.4.2150. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Luoma G. A., Herring F. G., Marshall A. G. Flexibility of end-labeled polymers from electron spin resonance line-shape analysis: 3' terminus of transfer ribonucleic acid and 5S ribonucleic acid. Biochemistry. 1982 Dec 7;21(25):6591–6598. doi: 10.1021/bi00268a042. [DOI] [PubMed] [Google Scholar]
  22. Luoma G. A., Marshall A. G. Lasar Raman evidence for a new cloverleaf secondary structure for eucaryotic 5 S RNA. J Mol Biol. 1978 Oct 15;125(1):95–105. doi: 10.1016/0022-2836(78)90256-5. [DOI] [PubMed] [Google Scholar]
  23. Mashkova T. D., Mazo A. M., Scheinker V. S., Beresten S. F., Bogdanova S. L., Avdonina T. A., Kisselev L. L. A rapid method for mapping exposed cytosines in polyribonucleotides. Application to tRNATrp (yeast, beef liver). Mol Biol Rep. 1980 Jul 31;6(2):83–87. doi: 10.1007/BF00778434. [DOI] [PubMed] [Google Scholar]
  24. Mashkova T. D., Serenkova T. I., Mazo A. M., Avdonina T. A., Timofeyeva MYa, Kisselev L. L. The primary structure of oocyte and somatic 5S rRNAs from the loach Misgurnus fossilis. Nucleic Acids Res. 1981 May 11;9(9):2141–2151. doi: 10.1093/nar/9.9.2141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Mazo A. M., Mashkova T. D., Avdonina T. A., Ambartsumyan N. S., Kisselev L. L. An improved rapid enzymatic method of RNA sequencing using chemical modification. Nucleic Acids Res. 1979 Dec 20;7(8):2469–2482. doi: 10.1093/nar/7.8.2469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Metspalu A., Toots I., Saarma M., Villems R. The ternary complex consisting of rat liver ribosomal 5 S RNA, 5.8 S RNA and protein L5. FEBS Lett. 1980 Sep 22;119(1):81–84. doi: 10.1016/0014-5793(80)81002-7. [DOI] [PubMed] [Google Scholar]
  27. Miura K., Tsuda S., Iwano T., Ueda T., Harada F., Kato N. Chemical modification of cytosine residues of mouse 5 S ribosomal RNA with hydrogen sulfide. (Nucleosides and nucleotides 43). Biochim Biophys Acta. 1983 Mar 10;739(2):181–189. doi: 10.1016/0167-4781(83)90028-3. [DOI] [PubMed] [Google Scholar]
  28. Nazar R. N., Wildeman A. G. Three helical domains form a protein binding site in the 5S RNA-protein complex from eukaryotic ribosomes. Nucleic Acids Res. 1983 May 25;11(10):3155–3168. doi: 10.1093/nar/11.10.3155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Nichols J. L., Welder L. S1 nuclease as a probe of yeast ribosomal 5 S RNA conformation. Biochim Biophys Acta. 1979 Feb 27;561(2):445–451. doi: 10.1016/0005-2787(79)90152-7. [DOI] [PubMed] [Google Scholar]
  30. Nishikawa K., Takemura S. Nucleotide sequence of 5 S RNA from Torulopsis utilis. FEBS Lett. 1974 Mar 15;40(1):106–109. doi: 10.1016/0014-5793(74)80904-x. [DOI] [PubMed] [Google Scholar]
  31. Noller H. F., Garrett R. A. Structure of 5 S ribosomal RNA from Escherichia coli: identification of kethoxal-reactive sites in the A and B conformations. J Mol Biol. 1979 Aug 25;132(4):621–636. doi: 10.1016/0022-2836(79)90378-4. [DOI] [PubMed] [Google Scholar]
  32. Ogata K., Terao K., Uchiumi T. Stimulation by aminoacyl-tRNA of the GTPase and ATPase activities of rat liver 5S RNA protein particles in the presence of EF-2. J Biochem. 1980 Feb;87(2):517–524. doi: 10.1093/oxfordjournals.jbchem.a132773. [DOI] [PubMed] [Google Scholar]
  33. Ohta S., Maruyama S., Nitta K., Sugai S. Melting of local ordered structures in yeast 5S ribosomal RNA in aqueous salts. Nucleic Acids Res. 1983 May 25;11(10):3363–3373. doi: 10.1093/nar/11.10.3363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Rabin D., Crothers D. M. Analysis of RNA secondary structure by photochemical reversal of psoralen crosslinks. Nucleic Acids Res. 1979 Oct 10;7(3):689–703. doi: 10.1093/nar/7.3.689. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Sedman J., Maimets T., Ustav M., Villems R. The interaction of 5 S RNA and its large fragments with ribosomal proteins. FEBS Lett. 1981 Dec 28;136(2):251–254. doi: 10.1016/0014-5793(81)80629-1. [DOI] [PubMed] [Google Scholar]
  36. Studnicka G. M., Eiserling F. A., Lake J. A. A unique secondary folding pattern for 5S RNA corresponds to the lowest energy homologous secondary structure in 17 different prokaryotes. Nucleic Acids Res. 1981 Apr 24;9(8):1885–1904. doi: 10.1093/nar/9.8.1885. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Thompson J. F., Wegnez M. R., Hearst J. E. Determination of the secondary structure of Drosophila melanogaster 5 S RNA by hydroxymethyltrimethylpsoralen crosslinking. J Mol Biol. 1981 Apr 15;147(3):417–436. doi: 10.1016/0022-2836(81)90493-9. [DOI] [PubMed] [Google Scholar]
  38. Toots I., Metspalu A., Villems R., Saarma M. Location of single-stranded and double-stranded regions in rat liver ribosomal 5S RNA and 5.8S RNA. Nucleic Acids Res. 1981 Oct 24;9(20):5331–5343. doi: 10.1093/nar/9.20.5331. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Toots I., Misselwitz R., Böhm S., Welfle H., Villems R., Saarma M. Two distinct conformations of rat liver ribosomal 5S RNA. Nucleic Acids Res. 1982 Jun 11;10(11):3381–3389. doi: 10.1093/nar/10.11.3381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Trifonov E. N., Bolshoi G. Open and closed 5 S ribosomal RNA, the only two universal structures encoded in the nucleotide sequences. J Mol Biol. 1983 Sep 5;169(1):1–13. doi: 10.1016/s0022-2836(83)80172-7. [DOI] [PubMed] [Google Scholar]
  41. Troutt A., Savin T. J., Curtiss W. C., Celentano J., Vournakis J. N. Secondary structure of Bombyx mori and Dictyostelium discoideum 5S rRNA from S1 nuclease and cobra venom ribonuclease susceptibility, and computer assisted analysis. Nucleic Acids Res. 1982 Jan 22;10(2):653–664. doi: 10.1093/nar/10.2.653. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Ulbrich N., Wool I. G. Identification by affinity chromatography of the eukaryotic ribosomal proteins that bind to 5 S ribosomal ribonucleic acid. J Biol Chem. 1978 Dec 25;253(24):9049–9052. [PubMed] [Google Scholar]
  43. Vasilenko S. K., Ryte V. C. [Isolation of highly purified ribonuclease from cobra (Naja oxiana) venom]. Biokhimiia. 1975 May-Jun;40(3):578–583. [PubMed] [Google Scholar]
  44. Wegnez M., Monier R., Denis H. Sequence heterogeneity of 5 S RNA in Xenopus laevis. FEBS Lett. 1972 Sep 1;25(1):13–20. doi: 10.1016/0014-5793(72)80443-5. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES