Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1985 Dec 20;13(24):8765–8785. doi: 10.1093/nar/13.24.8765

The rapid generation of oligonucleotide-directed mutations at high frequency using phosphorothioate-modified DNA.

J W Taylor, J Ott, F Eckstein
PMCID: PMC318950  PMID: 3001650

Abstract

M13 RF IV DNA may be prepared in vitro to contain phosphorothioate-modified internucleotidic linkages in the (-)strand only. Certain restriction enzymes react with this modified DNA to hydrolyze the (+)strand exclusively when a phosphorothioate linkage occurs at the normal cleavage point in the (-)strand. The reaction of Pvu I with M13mp2 RF IV DNA containing dCMPS residues in the (-)strand is of this type, and is exploited to allow subsequent digestion with exonuclease III of a portion of the (+)strand opposite different mutagenic mismatched oligonucleotide primers. Two methods are described by which this approach has been used to produce mutations in M13mp2 phage DNA with high efficiency as a result of simple and rapid in vitro manipulations. Plaques containing mutant phage in a genetically-pure form are obtained at a frequency of 40-66%, allowing their characterisation directly by sequence analysis without prior screening and plaque purification. The wide applicability of this approach is discussed.

Full text

PDF
8765

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Biggin M. D., Gibson T. J., Hong G. F. Buffer gradient gels and 35S label as an aid to rapid DNA sequence determination. Proc Natl Acad Sci U S A. 1983 Jul;80(13):3963–3965. doi: 10.1073/pnas.80.13.3963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brutlag D., Kornberg A. Enzymatic synthesis of deoxyribonucleic acid. 36. A proofreading function for the 3' leads to 5' exonuclease activity in deoxyribonucleic acid polymerases. J Biol Chem. 1972 Jan 10;247(1):241–248. [PubMed] [Google Scholar]
  3. Burgers P. M., Eckstein F. A study of the mechanism of DNA polymerase I from Escherichia coli with diastereomeric phosphorothioate analogs of deoxyadenosine triphosphate. J Biol Chem. 1979 Aug 10;254(15):6889–6893. [PubMed] [Google Scholar]
  4. Carter P., Bedouelle H., Winter G. Improved oligonucleotide site-directed mutagenesis using M13 vectors. Nucleic Acids Res. 1985 Jun 25;13(12):4431–4443. doi: 10.1093/nar/13.12.4431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Connolly B. A., Potter B. V., Eckstein F., Pingoud A., Grotjahn L. Synthesis and characterization of an octanucleotide containing the EcoRI recognition sequence with a phosphorothioate group at the cleavage site. Biochemistry. 1984 Jul 17;23(15):3443–3453. doi: 10.1021/bi00310a010. [DOI] [PubMed] [Google Scholar]
  6. Darby M. K., Vosberg H. P. Relaxation of supercoiled phosphorothioate DNA by mammalian topoisomerases is inhibited in a base-specific manner. J Biol Chem. 1985 Apr 10;260(7):4501–4507. [PubMed] [Google Scholar]
  7. Dohet C., Wagner R., Radman M. Repair of defined single base-pair mismatches in Escherichia coli. Proc Natl Acad Sci U S A. 1985 Jan;82(2):503–505. doi: 10.1073/pnas.82.2.503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Efimov V. A., Mirskikh O. V., Chakhmakhcheva O. G., Ovchinnikov YuA Convenient modification of the method for oligonucleotide-directed in vitro mutagenesis of cloned DNA. FEBS Lett. 1985 Feb 25;181(2):407–411. doi: 10.1016/0014-5793(85)80302-1. [DOI] [PubMed] [Google Scholar]
  9. Frank R., Heikens W., Heisterberg-Moutsis G., Blöcker H. A new general approach for the simultaneous chemical synthesis of large numbers of oligonucleotides: segmental solid supports. Nucleic Acids Res. 1983 Jul 11;11(13):4365–4377. doi: 10.1093/nar/11.13.4365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gillam S., Astell C. R., Smith M. Site-specific mutagenesis using oligodeoxyribonucleotides: isolation of a phenotypically silent phi X174 mutant, with a specific nucleotide deletion, at very high efficiency. Gene. 1980 Dec;12(1-2):129–137. doi: 10.1016/0378-1119(80)90023-2. [DOI] [PubMed] [Google Scholar]
  11. Grundström T., Zenke W. M., Wintzerith M., Matthes H. W., Staub A., Chambon P. Oligonucleotide-directed mutagenesis by microscale 'shot-gun' gene synthesis. Nucleic Acids Res. 1985 May 10;13(9):3305–3316. doi: 10.1093/nar/13.9.3305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Guo L. H., Wu R. Exonuclease III: use for DNA sequence analysis and in specific deletions of nucleotides. Methods Enzymol. 1983;100:60–96. doi: 10.1016/0076-6879(83)00046-4. [DOI] [PubMed] [Google Scholar]
  13. Guo L. H., Wu R. New rapid methods for DNA sequencing based in exonuclease III digestion followed by repair synthesis. Nucleic Acids Res. 1982 Mar 25;10(6):2065–2084. doi: 10.1093/nar/10.6.2065. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Jay E., Seth A. K., Rommens J., Sood A., Jay G. Gene expression: chemical synthesis of E. coli ribosome binding sites and their use in directing the expression of mammalian proteins in bacteria. Nucleic Acids Res. 1982 Oct 25;10(20):6319–6329. doi: 10.1093/nar/10.20.6319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Johnson P. H., Laskowski M., Sr Mung bean nuclease I. II. Resistance of double stranded deoxyribonucleic acid and susceptibility of regions rich in adenosine and thymidine to enzymatic hydrolysis. J Biol Chem. 1970 Feb 25;245(4):891–898. [PubMed] [Google Scholar]
  16. Kadonaga J. T., Knowles J. R. A simple and efficient method for chemical mutagenesis of DNA. Nucleic Acids Res. 1985 Mar 11;13(5):1733–1745. doi: 10.1093/nar/13.5.1733. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kramer B., Kramer W., Fritz H. J. Different base/base mismatches are corrected with different efficiencies by the methyl-directed DNA mismatch-repair system of E. coli. Cell. 1984 Oct;38(3):879–887. doi: 10.1016/0092-8674(84)90283-6. [DOI] [PubMed] [Google Scholar]
  18. Kramer W., Drutsa V., Jansen H. W., Kramer B., Pflugfelder M., Fritz H. J. The gapped duplex DNA approach to oligonucleotide-directed mutation construction. Nucleic Acids Res. 1984 Dec 21;12(24):9441–9456. doi: 10.1093/nar/12.24.9441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kramer W., Schughart K., Fritz H. J. Directed mutagenesis of DNA cloned in filamentous phage: influence of hemimethylated GATC sites on marker recovery from restriction fragments. Nucleic Acids Res. 1982 Oct 25;10(20):6475–6485. doi: 10.1093/nar/10.20.6475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kunkel T. A., Eckstein F., Mildvan A. S., Koplitz R. M., Loeb L. A. Deoxynucleoside [1-thio]triphosphates prevent proofreading during in vitro DNA synthesis. Proc Natl Acad Sci U S A. 1981 Nov;78(11):6734–6738. doi: 10.1073/pnas.78.11.6734. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kunkel T. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc Natl Acad Sci U S A. 1985 Jan;82(2):488–492. doi: 10.1073/pnas.82.2.488. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Messing J. New M13 vectors for cloning. Methods Enzymol. 1983;101:20–78. doi: 10.1016/0076-6879(83)01005-8. [DOI] [PubMed] [Google Scholar]
  23. Morgan A. R., Lee J. S., Pulleyblank D. E., Murray N. L., Evans D. H. Review: ethidium fluorescence assays. Part 1. Physicochemical studies. Nucleic Acids Res. 1979 Oct 10;7(3):547–569. doi: 10.1093/nar/7.3.547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Müller W., Weber H., Meyer F., Weissmann C. Site-directed mutagenesis in DNA: generation of point mutations in cloned beta globin complementary dna at the positions corresponding to amino acids 121 to 123. J Mol Biol. 1978 Sep 15;124(2):343–358. doi: 10.1016/0022-2836(78)90303-0. [DOI] [PubMed] [Google Scholar]
  25. Norris K., Norris F., Christiansen L., Fiil N. Efficient site-directed mutagenesis by simultaneous use of two primers. Nucleic Acids Res. 1983 Aug 11;11(15):5103–5112. doi: 10.1093/nar/11.15.5103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Ott J., Eckstein F. Filter disc supported oligonucleotide synthesis by the phosphite method. Nucleic Acids Res. 1984 Dec 11;12(23):9137–9142. doi: 10.1093/nar/12.23.9137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Potter B. V., Eckstein F. Cleavage of phosphorothioate-substituted DNA by restriction endonucleases. J Biol Chem. 1984 Nov 25;259(22):14243–14248. [PubMed] [Google Scholar]
  28. Shortle D., Botstein D. Directed mutagenesis with sodium bisulfite. Methods Enzymol. 1983;100:457–468. doi: 10.1016/0076-6879(83)00073-7. [DOI] [PubMed] [Google Scholar]
  29. Shortle D., Grisafi P., Benkovic S. J., Botstein D. Gap misrepair mutagenesis: efficient site-directed induction of transition, transversion, and frameshift mutations in vitro. Proc Natl Acad Sci U S A. 1982 Mar;79(5):1588–1592. doi: 10.1073/pnas.79.5.1588. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Taketo A. Sensitivity of Escherichia coli to viral nucleic acid. 8. Idiosyncrasy of Ca2+-dependent competence for DNA. J Biochem. 1974 Apr;75(4):895–904. doi: 10.1093/oxfordjournals.jbchem.a130463. [DOI] [PubMed] [Google Scholar]
  31. Vosberg H. P., Eckstein F. Incorporation of phosphorothioate groups into fd and phi X174 DNA. Biochemistry. 1977 Aug 9;16(16):3633–3640. doi: 10.1021/bi00635a020. [DOI] [PubMed] [Google Scholar]
  32. Wallace R. B., Schold M., Johnson M. J., Dembek P., Itakura K. Oligonucleotide directed mutagenesis of the human beta-globin gene: a general method for producing specific point mutations in cloned DNA. Nucleic Acids Res. 1981 Aug 11;9(15):3647–3656. doi: 10.1093/nar/9.15.3647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Wasylyk B., Derbyshire R., Guy A., Molko D., Roget A., Téoule R., Chambon P. Specific in vitro transcription of conalbumin gene is drastically decreased by single-point mutation in T-A-T-A box homology sequence. Proc Natl Acad Sci U S A. 1980 Dec;77(12):7024–7028. doi: 10.1073/pnas.77.12.7024. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Zakour R. A., James E. A., Loeb L. A. Site specific mutagenesis: insertion of single noncomplementary nucleotides at specified sites by error-directed DNA polymerization. Nucleic Acids Res. 1984 Aug 24;12(16):6615–6628. doi: 10.1093/nar/12.16.6615. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Zakour R. A., Loeb L. A. Site-specific mutagenesis by error-directed DNA synthesis. Nature. 1982 Feb 25;295(5851):708–710. doi: 10.1038/295708a0. [DOI] [PubMed] [Google Scholar]
  36. Zoller M. J., Smith M. Oligonucleotide-directed mutagenesis of DNA fragments cloned into M13 vectors. Methods Enzymol. 1983;100:468–500. doi: 10.1016/0076-6879(83)00074-9. [DOI] [PubMed] [Google Scholar]
  37. Zoller M. J., Smith M. Oligonucleotide-directed mutagenesis using M13-derived vectors: an efficient and general procedure for the production of point mutations in any fragment of DNA. Nucleic Acids Res. 1982 Oct 25;10(20):6487–6500. doi: 10.1093/nar/10.20.6487. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES