Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1981 Jan;78(1):182–186. doi: 10.1073/pnas.78.1.182

Restoration of glucagon responsiveness in spontaneously transformed rat hepatocytes (RL-PR-C) by fusion with normal progenitor cells and rat liver plasma membranes.

T M Reilly, M Blecher
PMCID: PMC319015  PMID: 6264432

Abstract

Spontaneously transformed RL-PR-C rat hepatocytes, unlike their normal differentiated progenitor cells, are insensitive to glucagon, although seemingly possessing large numbers of glucagon receptors and although retaining guanyl nucleotide regulatory protein-adenylate cyclase [ATP pyrophosphate-lyase (cyclizing), EC 4.6.1.1] system that responds to catecholamines, cholera toxin, and fluoride ions. Biochemical fusions between normal RL-PR-C hepatocytes or purified rat liver plasma membranes (whose adenylate cyclases were previously irreversibly inactivated with N-ethylmaleimide) with spontaneously transformed hepatocytes produced hybrids whose basal and fluoride-stimulated adenylate cyclase activities reflected those of the parental transformed cells but that now responded to glucagon. Using cholera toxin-catalyzed ADP-riboxylation of transformed hepatocytes to mark their guanyl nucleotide regulatory protein, fusiong such cells with N-ethylmaleimide-treated normal hepatocytes, and examining glucagon stimulation of adenylate cyclase activity in fusion hybrids produced results suggesting that the regulatory protein of the transformed cells is functionally normal. In fusion experiments between N-ethylmaleimide-treated hepatocytes and igeon erythrocytes, we found that normal, but not transformed, hepatocytes were effective in conferring glucagon sensitivity upon erythrocytes. Glucagon binding data revealed that, whereas normal RL-PR-C hepatocytes have two independent classes of binding sites, one of higher and the other of lower affinity, transformed cells possess only the low-affinity receptors. From these and previous observations, it is possible to conclude that the insensitivity of spontaneously transformed RL-PR-C hepatocytes to glucagon is due to the loss, during the transformation process, of the high-affinity glucagon receptor.

Full text

PDF
182

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beckner S. K., Reilly T., Martinez A., Blecher M. Alterations of cAMP metabolism and hormone responsiveness of cloned differentiated rat liver cells (RL-PR-C) upon spontaneous transformation. Exp Cell Res. 1980 Jul;128(1):151–158. doi: 10.1016/0014-4827(80)90398-5. [DOI] [PubMed] [Google Scholar]
  2. Beckner S., Blecher M. Kinetics of activation of ADP-ribosylation and adenylate cyclase by cholera toxin in cloned differentiated hepatocytes. FEBS Lett. 1978 Nov 15;95(2):319–322. doi: 10.1016/0014-5793(78)81020-5. [DOI] [PubMed] [Google Scholar]
  3. Birnbaumer L., Pohl S. L. Relation of glucagon-specific binding sites to glucagon-dependent stimulation of adenylyl cyclase activity in plasma membranes of rat liver. J Biol Chem. 1973 Mar 25;248(6):2056–2061. [PubMed] [Google Scholar]
  4. Cassel D., Pfeuffer T. Mechanism of cholera toxin action: covalent modification of the guanyl nucleotide-binding protein of the adenylate cyclase system. Proc Natl Acad Sci U S A. 1978 Jun;75(6):2669–2673. doi: 10.1073/pnas.75.6.2669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gill D. M., Meren R. ADP-ribosylation of membrane proteins catalyzed by cholera toxin: basis of the activation of adenylate cyclase. Proc Natl Acad Sci U S A. 1978 Jul;75(7):3050–3054. doi: 10.1073/pnas.75.7.3050. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Harwood J. P., Löw H., Rodbell M. Stimulatory and inhibitory effects of guanyl nucleotides on fat cell adenylate cyclase. J Biol Chem. 1973 Sep 10;248(17):6239–6245. [PubMed] [Google Scholar]
  7. Johnson G. L., Kaslow H. R., Bourne H. R. Genetic evidence that cholera toxin substrates are regulatory components of adenylate cyclase. J Biol Chem. 1978 Oct 25;253(20):7120–7123. [PubMed] [Google Scholar]
  8. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  9. Neville D. M., Jr Isolation of an organ specific protein antigen from cell-surface membrane of rat liver. Biochim Biophys Acta. 1968 Apr 9;154(3):540–552. doi: 10.1016/0005-2795(68)90014-7. [DOI] [PubMed] [Google Scholar]
  10. Orly J., Schramm M. Coupling of catecholamine receptor from one cell with adenylate cyclase from another cell by cell fusion. Proc Natl Acad Sci U S A. 1976 Dec;73(12):4410–4414. doi: 10.1073/pnas.73.12.4410. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Petersen B., Beckner S., Blecher M. Hormone receptors. 7. Characteristics of insulin receptors in a new line of cloned neonatal rat hepatocytes. Biochim Biophys Acta. 1978 Sep 6;542(3):470–485. doi: 10.1016/0304-4165(78)90377-x. [DOI] [PubMed] [Google Scholar]
  12. Pfeuffer T., Helmreich E. J. Activation of pigeon erythrocyte membrane adenylate cyclase by guanylnucleotide analogues and separation of a nucleotide binding protein. J Biol Chem. 1975 Feb 10;250(3):867–876. [PubMed] [Google Scholar]
  13. Pohl S. L., Krans H. M., Kozyreff V., Birnbaumer L., Rodbell M. The glucagon-sensitive adenyl cyclase system in plasma membranes of rat liver. VI. Evidence for a role of membrane lipids. J Biol Chem. 1971 Jul 25;246(14):4447–4454. [PubMed] [Google Scholar]
  14. Reilly T., Beckner S., Blecher M. Uncoupling of the glucagon receptor-adenylate cyclase system by glucagon in cloned differentiated rat hepatocytes. J Recept Res. 1980;1(2):277–311. doi: 10.3109/10799898009044102. [DOI] [PubMed] [Google Scholar]
  15. Rodbell M., Birnbaumer L., Pohl S. L., Krans H. M. The glucagon-sensitive adenyl cyclase system in plasma membranes of rat liver. V. An obligatory role of guanylnucleotides in glucagon action. J Biol Chem. 1971 Mar 25;246(6):1877–1882. [PubMed] [Google Scholar]
  16. Rodbell M. The role of hormone receptors and GTP-regulatory proteins in membrane transduction. Nature. 1980 Mar 6;284(5751):17–22. doi: 10.1038/284017a0. [DOI] [PubMed] [Google Scholar]
  17. Ross E. M., Maguire M. E., Sturgill T. W., Biltonen R. L., Gilman A. G. Relationship between the beta-adrenergic receptor and adenylate cyclase. J Biol Chem. 1977 Aug 25;252(16):5761–5775. [PubMed] [Google Scholar]
  18. Salomon Y., Londos C., Rodbell M. A highly sensitive adenylate cyclase assay. Anal Biochem. 1974 Apr;58(2):541–548. doi: 10.1016/0003-2697(74)90222-x. [DOI] [PubMed] [Google Scholar]
  19. Schaeffer W. I., Heintz N. H. A diploid rat liver cell culture. IV. Malignant transformation by aflatoxin B1. In Vitro. 1978 May;14(5):418–427. doi: 10.1007/BF02616103. [DOI] [PubMed] [Google Scholar]
  20. Schaeffer W. I., Polifka M. D. A diploid rat liver cell culture. III. Characterization of the heteroploid morphological variants which develop with time in culture. Exp Cell Res. 1975 Oct 1;95(1):167–175. doi: 10.1016/0014-4827(75)90622-9. [DOI] [PubMed] [Google Scholar]
  21. Schleifer L. S., Garrison J. C., Sternweis P. C., Northup J. K., Gilman A. G. The regulatory component of adenylate cyclase from uncoupled S49 lymphoma cells differs in charge from the wild type protein. J Biol Chem. 1980 Apr 10;255(7):2641–2644. [PubMed] [Google Scholar]
  22. Schramm M., Orly J., Eimerl S., Korner M. Coupling of hormone receptors to adenylate cyclase of different cells by cell fusion. Nature. 1977 Jul 28;268(5618):310–313. doi: 10.1038/268310a0. [DOI] [PubMed] [Google Scholar]
  23. Schramm M. Transfer of glucagon receptor from liver membranes to a foreign adenylate cyclase by a membrane fusion procedure. Proc Natl Acad Sci U S A. 1979 Mar;76(3):1174–1178. doi: 10.1073/pnas.76.3.1174. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Schulster D., Orly J., Seidel G., Schramm M. Intracellular cyclic AMP production enhanced by a hormone receptor transferred from a different cell. beta-adrenergic responses in cultured cells conferred by fusion with turkey erythrocytes. J Biol Chem. 1978 Feb 25;253(4):1201–1206. [PubMed] [Google Scholar]
  25. Schwarzmeier J. D., Gilman A. G. Reconstitution of catecholamine-sensitive adenylate cyclase activity: interaction of components following cell-cell and membrane-cell fusion. J Cyclic Nucleotide Res. 1977 Aug;3(4):227–238. [PubMed] [Google Scholar]
  26. Shlatz L., Marinetti G. V. Hormone-calcium interactions with the plasma membrane of rat liver cells. Science. 1972 Apr 14;176(4031):175–177. doi: 10.1126/science.176.4031.175. [DOI] [PubMed] [Google Scholar]
  27. Sonne O., Berg T., Christoffersen T. Binding of 125I-labeled glucagon and glucagon-stimulated accumulation of adenosine 3':5'-monophosphate in isolated intact rat hepatocytes. Evidence for receptor heterogeneity. J Biol Chem. 1978 May 10;253(9):3203–3210. [PubMed] [Google Scholar]
  28. Tomasi V., Koretz S., Ray T. K., Dunnick J., Marinetti G. V. Hormone action at the membrane level. II. The binding of epinephrine and glucagon to the rat liver plasma membrane. Biochim Biophys Acta. 1970 Jul 7;211(1):31–42. doi: 10.1016/0005-2736(70)90120-3. [DOI] [PubMed] [Google Scholar]
  29. de Meyts P., Roth J., Neville D. M., Jr, Gavin J. R., 3rd, Lesniak M. A. Insulin interactions with its receptors: experimental evidence for negative cooperativity. Biochem Biophys Res Commun. 1973 Nov 1;55(1):154–161. doi: 10.1016/s0006-291x(73)80072-5. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES