Abstract
Specimens of human fibrinogen mixed with Fab fragments of antibodies that were specific for various portions of the fibrinogen molecule were tungsten shadow-cast and examined by electron microscopy. Typical trinodular fibrinogen molecules were observed when Fab fragments were omitted or when fragments from nonimmune sera were used. In the experimental fibrinogen-Fab preparations, a significant number of molecules were found with an extra nodule. In the case of Fab fragments from antibodies directed to fragment E, the additional nodule was attached to the central sphere of the fibrinogen molecule. Similarly, anti-fragment D preparations yielded molecules that were derivatized on the terminal spheres. Fragments from antibodies raised against a cyanogen bromide fragment of fibrinogen alpha chains (residues 241-476) also led to exclusive derivatization of the terminal domains, although in these cases the additional material was often separated discretely from the terminal sphere by a gap. These experiments confirm longstanding notions that the central domain of a trinodular fibrinogen molecule corresponds to the plasmin-derived fragment E and that the terminal spheres correspond to fragments D. Moreover, the carboxy-terminal two-thirds of alpha chains protrude from the extremities of the molecule, as had been inferred on the basis of indirect biochemical data.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Blombäck B., Hessel B., Hogg D. Disulfide bridges in nh2 -terminal part of human fibrinogen. Thromb Res. 1976 May;8(5):639–658. doi: 10.1016/0049-3848(76)90245-0. [DOI] [PubMed] [Google Scholar]
- Bouma H., Takagi T., Doolittle R. F. The arrangement of disulfide bonds in fragment D from human fibrinogen. Thromb Res. 1978 Sep;13(3):557–562. doi: 10.1016/0049-3848(78)90142-1. [DOI] [PubMed] [Google Scholar]
- Donovan J. W., Mihalyi E. Conformation of fibrinogen: calorimetric evidence for a three-nodular structure. Proc Natl Acad Sci U S A. 1974 Oct;71(10):4125–4128. doi: 10.1073/pnas.71.10.4125. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Doolittle R. F., Cassman K. G., Cottrell B. A., Friezner S. J., Takagi T. Amino acid sequence studies on the alpha chain of human fibrinogen. Covalent structure of the alpha-chain portion of fragment D. Biochemistry. 1977 Apr 19;16(8):1710–1715. doi: 10.1021/bi00627a029. [DOI] [PubMed] [Google Scholar]
- Doolittle R. F., Schubert D., Schwartz S. A. Amino acid sequence studies on artiodactyl fibrinopeptides. I. Dromedary camel, mule deer, and cape buffalo. Arch Biochem Biophys. 1967 Feb;118(2):456–467. doi: 10.1016/0003-9861(67)90374-8. [DOI] [PubMed] [Google Scholar]
- Doolittle R. F. Structural aspects of the fibrinogen to fibrin conversion. Adv Protein Chem. 1973;27:1–109. doi: 10.1016/s0065-3233(08)60446-5. [DOI] [PubMed] [Google Scholar]
- Doolittle R. F., Watt K. W., Cottrell B. A., Strong D. D., Riley M. The amino acid sequence of the alpha-chain of human fibrinogen. Nature. 1979 Aug 9;280(5722):464–468. doi: 10.1038/280464a0. [DOI] [PubMed] [Google Scholar]
- Estis L. F., Haschemeyer R. H. Electron microscopy of negatively stained and unstained fibrinogen. Proc Natl Acad Sci U S A. 1980 Jun;77(6):3139–3143. doi: 10.1073/pnas.77.6.3139. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fowler W. E., Erickson H. P. Trinodular structure of fibrinogen. Confirmation by both shadowing and negative stain electron microscopy. J Mol Biol. 1979 Oct 25;134(2):241–249. doi: 10.1016/0022-2836(79)90034-2. [DOI] [PubMed] [Google Scholar]
- HALL C. E., SLAYTER H. S. The fibrinogen molecule: its size, shape, and mode of polymerization. J Biophys Biochem Cytol. 1959 Jan 25;5(1):11–16. doi: 10.1083/jcb.5.1.11. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Haverkate F., Timan G. Protective effect of calcium in the plasmin degradation of fibrinogen and fibrin fragments D. Thromb Res. 1977 Jun;10(6):803–812. doi: 10.1016/0049-3848(77)90137-2. [DOI] [PubMed] [Google Scholar]
- Henschen A., Lottspeich F. Amino acid sequence of human fibrin. Preliminary note on the completion of the beta-chain sequence. Hoppe Seylers Z Physiol Chem. 1977 Dec;358(12):1643–1646. [PubMed] [Google Scholar]
- Hudry-Clergeon G., Marguerie G., Pouit L., Suscillon M. Models proposed for the fibrinogen molecule and for the polymerization process. Thromb Res. 1975 Jun;6(6):533–541. doi: 10.1016/0049-3848(75)90065-1. [DOI] [PubMed] [Google Scholar]
- Krakow W., Endres G. F., Siegel B. M., Scheraga H. A. An electron microscopic investigation of the polymerization of bovine fibrin monomer. J Mol Biol. 1972 Oct 28;71(1):95–103. doi: 10.1016/0022-2836(72)90403-2. [DOI] [PubMed] [Google Scholar]
- Lottspeich F., Henschen A. Amino acid sequence of human fibrin. Preliminary note on the completion of the gamma-chain sequence. Hoppe Seylers Z Physiol Chem. 1977 Jul;358(7):935–938. [PubMed] [Google Scholar]
- Marder V. J. Identification and purification of fibrinogen degradation products produced by plasmin: considerations on the structure of fibrinogen. Scand J Haematol Suppl. 1971;13:21–36. doi: 10.1111/j.1600-0609.1971.tb01981.x. [DOI] [PubMed] [Google Scholar]
- Mosesson M. W., Escaig J., Feldmann G. Electron microscopy of metal-shadowed fibrinogen molecules deposited at different concentrations. Br J Haematol. 1979 Nov;43(3):469–477. doi: 10.1111/j.1365-2141.1979.tb03775.x. [DOI] [PubMed] [Google Scholar]
- Mosesson M. W. Fibrinogen structure after spraying on mica: assessing the electron microscopic basis for a trinodular model. Thromb Res. 1976 Jun;8(6):737–744. doi: 10.1016/0049-3848(76)90002-5. [DOI] [PubMed] [Google Scholar]
- NUSSENZWEIG V., SELIGMANN M., PELMONT J., GRABAR P. [The products of degradation of human fibrinogen by plasmin. I. Separation and physicochemical properties]. Ann Inst Pasteur (Paris) 1961 Mar;100:377–389. [PubMed] [Google Scholar]
- NUSSENZWEIG V., SELIGMANN M., PELMONT J., GRABAR P. [The products of degradation of human fibrinogen by plasmin. I. Separation and physicochemical properties]. Ann Inst Pasteur (Paris) 1961 Mar;100:377–389. [PubMed] [Google Scholar]
- PORTER R. R. The hydrolysis of rabbit y-globulin and antibodies with crystalline papain. Biochem J. 1959 Sep;73:119–126. doi: 10.1042/bj0730119. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pizzo S. V., Schwartz M. L., Hill R. L., McKee P. A. The effect of plasmin on the subunit structure of human fibrin. J Biol Chem. 1973 Jul 10;248(13):4574–4583. [PubMed] [Google Scholar]
- Pouit L., Marcille G., Suscillon M., Hollard D. Etude en microscopie électronique de différentes etapes de la fibrinoformation. Thromb Diath Haemorrh. 1972 Jul 31;27(3):559–572. [PubMed] [Google Scholar]
- Shainoff J. R., Braun W. E. Purification of anti-fibrinogen antibodies. Anal Biochem. 1973 Sep;55(1):206–211. doi: 10.1016/0003-2697(73)90305-9. [DOI] [PubMed] [Google Scholar]
- Slayter H. S. High-resolution metal replication of macromolecules. Ultramicroscopy. 1976 Sep-Oct;1(4):341–357. doi: 10.1016/0304-3991(76)90050-4. [DOI] [PubMed] [Google Scholar]
- Strong D. D., Watt K. W., Cottrell B. A., Doolittle R. F. Amino acid sequence studies on the alpha chain of human fibrinogen. Complete sequence of the largest cyanogen bromide fragment. Biochemistry. 1979 Nov 27;18(24):5399–5404. doi: 10.1021/bi00591a022. [DOI] [PubMed] [Google Scholar]
- Telford J. N., Nagy J. A., Hatcher P. A., Scheraga H. A. Location of peptide fragments in the fibrinogen molecule by immunoelectron microscopy. Proc Natl Acad Sci U S A. 1980 May;77(5):2372–2376. doi: 10.1073/pnas.77.5.2372. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Watt K. W., Takagi T., Doolittle R. F. Amino acid sequence of the beta chain of human fibrinogen. Biochemistry. 1979 Jan 9;18(1):68–76. doi: 10.1021/bi00568a011. [DOI] [PubMed] [Google Scholar]


