Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1981 Jan;78(1):261–265. doi: 10.1073/pnas.78.1.261

Water structure-dependent charge transport in proteins.

P R Gascoyne, R Pethig, A Szent-Györgyi
PMCID: PMC319032  PMID: 6264436

Abstract

Dielectric and conductivity measurements are reported for bovine serum albumin as a function of hydration. Strong evidence is found for the existence of mobile charges whose short- and long-range hopping motion strongly depends on the physical state of the protein-bound water. These charges are considered to be protons. Insights into the nature of the electrical properties of protein-methylglyoxal complexes are provided, and the possibilities for correlated proton-electron motions are outlined.

Full text

PDF
261

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ataka M., Tanaka S. Electrical conductivity of single crystals of lysozyme. Biopolymers. 1980 Mar;19(3):669–679. doi: 10.1002/bip.1980.360190315. [DOI] [PubMed] [Google Scholar]
  2. Bardelmeyer G. H. Electrical conduction in collagen. II. Some aspects of hydration. Biopolymers. 1973;12(10):2303–2307. doi: 10.1002/bip.1973.360121009. [DOI] [PubMed] [Google Scholar]
  3. Bone S., Lewis T. J., Pethig R., Szent-Györgyi A. Electronic properties of some protein--methylglyoxal complexes. Proc Natl Acad Sci U S A. 1978 Jan;75(1):315–318. doi: 10.1073/pnas.75.1.315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. DAVIS K. M., ELEY D. D., SNART R. S. Enhanced semiconductivity in protein complexes. Nature. 1960 Nov 26;188:724–725. doi: 10.1038/188724a0. [DOI] [PubMed] [Google Scholar]
  5. Eley D. D., Snart R. S. Conduction in chloroplast components. Biochim Biophys Acta. 1965 Jul 22;102(2):379–385. doi: 10.1016/0926-6585(65)90128-7. [DOI] [PubMed] [Google Scholar]
  6. Kirkwood J. G., Shumaker J. B. The Influence of Dipole Moment Fluctuations on the Dielectric Increment of Proteins in Solution. Proc Natl Acad Sci U S A. 1952 Oct;38(10):855–862. doi: 10.1073/pnas.38.10.855. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kuntz I. D. Hydration of macromolecules. IV. Polypeptide conformation in frozen solutions. J Am Chem Soc. 1971 Jan 27;93(2):516–518. doi: 10.1021/ja00731a037. [DOI] [PubMed] [Google Scholar]
  8. McLaughlin J. A., Pethig R., Szent-Györgyi A. Spectroscopic studies of the protein-methylglyoxal adduct. Proc Natl Acad Sci U S A. 1980 Feb;77(2):949–951. doi: 10.1073/pnas.77.2.949. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Pethig R., Szent-Györgyi A. Electronic properties of the casein-methylglyoxal complex. Proc Natl Acad Sci U S A. 1977 Jan;74(1):226–228. doi: 10.1073/pnas.74.1.226. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Powell M. R., Rosenberg B. Nature of the charge carriers in solvated biomacromolecules: DNA and water. Biopolymers. 1970 Nov;9(11):1403–1406. doi: 10.1002/bip.1970.360091109. [DOI] [PubMed] [Google Scholar]
  11. Szent-Györgyi A. The living state and cancer. Physiol Chem Phys. 1980;12(2):99–110. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES